Wie das KI-Coaching funktioniert

Mischa Janiec im Gespräch mit MyFitCoach-Entwickler Dr. Tim Würth

Evidenzbasiertes optimum

angewandt auf deine individuelle SITUATION

MyFitCoach ist eine künstliche Intelligenz, die Fitness-Athleten und Natural-Bodybuilder durch vollständig evidenzbasiertes und individualisiertes Trainings- und Ernährungs-Coaching auf dem effizientesten Weg zu ihrem Ziel führt.

Deshalb beruht die MyFitCoach-KI nicht auf Meinungen, sondern auf über 50 Jahren praxiserprobter Wissenschaft und den Erfahrungswerten der weltbesten Coaches (wie z.B. Lyle McDonald, Layne Norten, 3DMJ, etc.).

MyFitCoach wendet diese evidenzbasierten Erkenntnisse in der korrekten Priorität auf den individuellen Fall des Athleten an.

Beim Bodybuilding gibt es unzählige Variablen, die zueinander in Wechselwirkung stehen. Beim Training gibt es unter anderem Volumen, Frequenz, Intensität und Progression, die alle stark zueinander und mit den Variablen der Ernährung (Kalorien, Makros, etc.), der Regeneration und dem Körpergewicht in Wechselwirkung stehen.

Die MyFitCoach-KI ist in der Lage, all diese Variablen optimal auf die individuelle Situation des Athleten zuzuschneiden und all diese Variablen jede Woche basierend auf der Entwicklung des Athleten zu optimieren.

Durch MyFitCoach steht nun jedem Athleten ein vollständig evidenzbasiertes, individualisiertes und objektives Coaching zur Verfügung, um sein genetisches Potenzial auf dem effizientesten Weg ausschöpfen zu können.

Wie das KI-Coaching abläuft

Zu Beginn des Coachings analysiert MyFitCoach mithilfe von 21 Fragen zum Körperstatus, Training, Ernährung und Ziel, die individuelle Situation des Athleten. Mit diesen Daten erstellt MyFitCoach ein vollständig evidenzbasiertes Trainings- und Ernährungsprogramm maßgeschneidert auf den Athleten und seine aktuelle Situation.

Das Coaching findet vollständig in der MyFitCoach-App auf dem Smartphone statt. Der Athlet führt in der ersten Woche sein Training und seine Ernährung durch und trackt beides innerhalb der App.

Beim Training werden dem Athleten bei jeder Übung die Ziel-Wiederholungen, das Ziel-Gewicht und die Ziel-RPE vorgegeben. Der Athlet trägt dann nach jedem Satz ein, wie viele Wiederholungen, welches Gewicht und welche RPE er tatsächlich erreicht hat, um MyFitCoach mit den nötigen Trainingsdaten zu versorgen.

Beim Abschließen der Trainingswoche nach der letzten Einheit wird der Athlet nach seiner Ermüdung und nach der spezifischen Regeneration aller Muskelgruppen befragt.

Bei der Ernährung werden dem Athleten die täglichen Kalorien- und Makroziele vorgegeben. Der Athlet kann seine täglichen Makros, seine Kalorien und sein Körpergewicht in der App tracken.

Ausgestattet mit diesen Coaching-Daten analysiert MyFitCoach jede Woche die Trainings-Performance, die Regeneration, die Ernährung und die Körpergewichtsentwicklung des Athleten und führt datengetriebene  progressive Anpassungen des Trainingsvolumens, der Trainingsgewichte, Wiederholungen, RPE Kalorien, Makros und weiterer Variablen durch.

Mit jeder Eingabe lernt MyFitCoach den Athleten besser kennen und kann ihn besser zu seinem Ziel führen.

Trainingsplan-Erstellung

Volumen

Volumen = mit wie vielen Sätzen ein Muskel pro Woche trainiert wird (innerhalb optimaler Intensität und optimalen Wiederholunngsbereichen).

Der Haupttreiber für Fortschritt beim Muskelaufbau ist das Trainingsvolumen. Die Wissenschaft hat gezeigt, dass zwischen dem Trainingsvolumen und Muskelwachstum eine eindeutige dose-response Beziehung bis zu einem bestimmten Punkt besteht.

Die obere Grenze des Volumens wird beim einzelnen Athleten durch die ausreichende oder unzulängliche Regeneration bestimmt. Ob der Athlet ausreichend regeneriert ist, erkennt man an dem existierenden oder fehlenden Fortschritt im Training. Für maximales Muskelwachstum sollte man mit genau so viel Volumen trainieren, wie man sich noch davon regenerieren und weiterhin Fortschritte im Training erzielen kann.

Deshalb liegt der Hauptfokus beim Trainings-Coaching auf dem Herausfinden des optimalen Volumens (nicht zu wenig und nicht zu viel, sondern das optimale Volumen), um maximale und dauerhafte Progression selbst bei sehr fortgeschrittenen Athleten sicherstellen zu können.

Beim Festlegen des optimalen Volumens gibt es zwei Herausforderungen: 1. Das optimale Volumen ist bei jedem Athleten individuell und 2. es verändert sich mit der Zeit.

MyFitCoach findet das optimale Volumen des Athleten durch systematisches Ausprobieren ausgehend von einem evidenzbasierten Startvolumen unter Berücksichtigung der Fortgeschrittenheit und falls bekannt des bisherigen Volumens des Athleten, sowie möglichen Verletzungen und Prioritäten heraus.

Am Ende jeder Trainingswoche fragt MyFitCoach nach der Ermüdung und Regeneration des Athleten. MyFitCoach analysiert dann den Trainingsfortschritt und die Regeneration des Athleten und passt basierend auf diesen zwei Parametern das zukünftige Volumen an, damit der Athlet dauerhaft mit dem für ihn optimalen Volumen trainiert.

Startvolumen:

Wenn vorhanden beim Athleten, wird das bisherige Volumen und der darauf basierende Fortschritt und die Regeneration pro Muskel verwendet. 

Ansonsten wird das Volumen je nach Fortgeschrittenheitsgrad zwischen 10 bis 20 Sätze pro Muskel pro Woche festgelegt. Besonders fortgeschrittene Athleten können auch mehr als 20 Sätze pro Muskel pro Woche bekommen. Dies sind lediglich Startwerte und werden nach jedem Zyklus je nach Fortschritt und Regeneration angepasst.

Frequenz

Frequenz = wie oft und mit welchem Abstand ein Muskel pro Woche trainiert wird.

Die Wissenschaft hat gezeigt, dass eine 2er Frequenz pro Woche zuträglicher für Muskelwachstum ist, als eine 1er Frequenz. Höhere Frequenzen zeigen kaum begünstigende Effekte.

Die Frequenz dient zur Verteilung des Volumens auf die Trainingswoche, um die optimale Performance und Regeneration sicherzustellen.

Deshalb strebt MyFitCoach eine Mindestfrequenz von 2 pro Muskel pro Woche an und wählt ggf. für einzelne oder alle Muskeln höhere Frequenzen, wenn das Volumen und die Regeneration dies erfordern.

Anstrengungsintensität (INTENSITY OF EFFORT)

Anstrengungsintensität = mit wie viel Anstrengung ein Muskel trainiert wird (gemessen in RPE).

RPE (Rate of perceived Exertion) dient als Maß, um das subjektive Anstrengungsempfinden zu messen.

Die RPE wird dahingehend optimiert, dass der Athlet möglichst effektiv sein nötiges Trainingsvolumen für Muskelwachstum ansammeln kann.

In der Mehrheit der Sätze wird RPE 8 vorgegeben und vereinzelt an den richtigen Stellen auf RPE 9 oder 10 erhöht, wenn die Performance oder Regeneration dadurch im aktuellen Training oder in den nächsten Einheiten nicht beeinträchtigt wird.

BELASTUNGSINTENSITÄT (Intensity of Load)

Belastungsintensität = mit wie viel Gewicht ein Muskel trainiert wird (gemessen in Prozent des 1 Rep-Max [1RM]).

Die Wissenschaft zeigt, dass ein Muskel eine progressive Überlastung braucht, um zu wachsen. Deshalb steigert MyFitCoach die Trainingsgewichte und Wiederholungen progressiv im Verlauf der einzelnen Trainingszyklen.

In der ersten Trainingswoche wählt der Athlet seine Gewichte selbst mit der Bedingung die vorgegebenen Wiederholungen und RPE möglichst genau zu treffen. Ab der zweiten Woche erhöht MyFitCoach die Leistung des Athleten wöchentlich durch progressive Anpassungen der Gewichte und Wiederholungen.

Wiederholungsbereiche

Wiederholungsbereich = wie viele Wiederholungen in den Sätzen durchgeführt werden.

Die Wiederholungsbereiche sind speziell gewählt, um möglichst effektiv das nötige Volumen für Muskelwachstum ansammeln zu können.

Low-Rep-Sätze: 4 – 7 Wiederholungen

Mid-Rep-Sätze: 8 – 12 Wiederholungen

High-Rep-Sätze: 13 – 20 Wiederholungen

Im Großteil der Sätze werden Mid-Reps verwendet. Vereinzelt werden auch High-Reps bei Isolationsübungen verwendet, wo dies Sinn macht. Low-Reps werden vereinzelt bei Verbundübungen verwendet und nach Wunsch auch vermehrt eingesetzt, wenn der Athlet einen besonderen Fokus auf Kraftsteigerung  legt.

Übungsauswahl

MyFitCoach wählt die Übungen primär, um das Ziel-Volumen aller Muskelgruppen des Athleten möglichst perfekt zu treffen.

Es werden Übungen in den Trainingsplan eingebaut, die sich in der Praxis bewährt haben und die für den jeweiligen Muskel die höchste Effektivität aufweisen.

Der Athlet kann jederzeit Übungen gegen andere Übungen derselben Art (gleicher Primary Mover oder gleicher Bewegungsablauf) in seinem Plan austauschen, wenn dies aus Vorliebe gewünscht wird oder weil bestimmte Übungen im jeweiligen Gym nicht verfügbar sind.

Zudem werden die unterschiedlichen Funktionsweisen des jeweiligen Muskels abgedeckt, damit der Muskel im Verlauf einer Trainingswoche optimal gereizt wird. Bei Hamstrings werden z.B. Übungen für die Hüftstreckung (z.B. Rumänisches Kreuzheben) als auch für die Kniebeugung (z.B. Beinbeugen an der Maschine) eingeplant.

Bei Verletzungen oder Schmerzen können bestimmte Übungen und Bewegungsmuster ausgeschlossen werden und dann sucht MyFitCoach dafür die optimalen Alternativen, damit der Athlet bei Verletzungen weiterhin Fortschritt machen kann.

Reihenfolge

Koordinatorisch schwierigere Übungen wie z.B. Kniebeugen, Kreuzheben oder Bankdrücken werden eher am Anfang des Trainings platziert und einfache Isolationsübungen eher am Ende des Trainings.

Zusätzlich werden priorisierte Muskeln nach Möglichkeit zuerst trainiert, um für diese Muskeln die maximale mögliche Performance und Fortschritt sicherzustellen.

Da die Übungsreihenfolge jedoch keine besonders hohe Wichtigkeit im Training hat, kann der Athlet diese natürlich auf sich anpassen.

Pausenzeiten

Die Pausenzeiten werden je nach Kreislaufbelastung in den Plan eingebaut, wobei schwere Verbundübungen längere Pausenzeiten bekommen als leichtere Isolationsübungen.

Je nach verfügbarer Trainingszeit kürzt MyFitCoach Pausenzeiten, um mehr Volumen unterbringen zu können oder verlängert Pausenzeiten, um die Performance in jedem einzelnen Satz zu maximieren. Dabei gibt es natürlich eine minimale und eine maximale Pausenzeit je Übung, damit der Athlet sich bei noch so viel Zeitdruck ausreichend zwischen den Sätzen erholen kann.

Periodisierung & Volumen-Anpassung

MyFitCoach periodisiert das Training des Athleten in Zyklen. Ein Zyklus besteht aus vier Trainingswochen und einer Woche Deload. MyFitCoach vergleicht die Performance  der ersten beiden Trainingswochen eines Zyklus mit der Performance der ersten beiden Trainingswochen des vorherigen Zyklus für jede einzelne Übung. Dadurch wird erkannt, welche Muskeln Fortschritt gemacht haben und welche nicht.

Für alle Muskeln, die Fortschritt gemacht haben, wird keine Volumen-Anpassung vorgenommen, da dieses Volumen für diesen Muskel aktuell funktioniert. Für alle Muskeln, die stagnieren oder sogar Rückschritt machen, passt MYFITCOACH das Volumen für jeden einzelnen Muskel auf Basis der subjektiven Regeneration des Athleten an. MYFITCOACH reduziert das Volumen, wenn der Muskel überlastet ist und erhöht es, wenn er unterlastet ist.

Progression & Performance-steigerung

MyFitCoach steigert die Leistung des Athleten von Training zu Training mit unser eigens entwickelten Performance Progression. Hierbei wird die Performance, die wir mithilfe des geschätzten 1 Rep Max (E1RM) ermitteln, in möglichst kleinen und gleichmäßigen Schritten gesteigert. Herkömmliche Progressionsmodelle (wie z.B. Double Progression) nutzen stark vereinfachte Progressionsschemata, die den Nachteil haben, dass bei Gewichts- oder Wiederholungssteigerungen sehr große Performance-Steigerungen oder -Senkungen entstehen (siehe roten Beispiel-Fall).

Bei der MyFitCoach Performance Progression wird der Athlet in für ihn angemessenen Schritten je nach Fortgeschrittenheit gesteigert, sodass er sich bei jedem Training ein wenig in seiner Performance steigert, egal wie fortgeschritten er/sie ist (siehe türkisen Beispiel-Fall).

AUtoregulation

MyFitCoach lässt den Athleten in erster Linie nach RPE trainieren, da Progression durch die korrekten Rahmenbedingungen in Training und Ernährung entsteht.

Hat der Athlet mal einen besonders guten oder besonders schlechten Tag, passt MyFitCoach die Performance-Vorgaben (Wiederholungen und Gewichte) an seine aktuelle Tagesform an. Hierbei werden zuerst die Wiederholungen und, wenn er die vorgesehene Rep-Range verlässt, die Gewichte innerhalb einer Übung auf Grundlage der Leistung in den bereits erbrachten Sätzen angepasst.

Damit wird verhindert, dass der Athlet viel zu hart oder viel zu lasch trainiert, weil er seine vorgegebenen Wiederholungen und Gewichte krampfhaft einhalten will. Somit wird sichergestellt, dass der Athlet die Progression auf sich zukommen lässt und er sich im Training nicht selbst betrügen kann.

ERNÄHRUNGS-COACHING

MyFitCoach nutzt Flexible Dieting als den bewährtesten Ernährungsansatz zum Coaching seiner Athleten. Es gibt keine „guten“ oder „schlechten“ Lebensmittel, sondern nur Kalorien, Makro- und Mikronährstoffe, die wenn sie getroffen werden, die gewünschten Resultate auf der Waage und im Spiegel liefern.

Zu Beginn des Coachings wählt der Athlet, ob er primär Muskelaufbau, Fettabbau oder Rekomposition erreichen möchte. Falls bekannt, verwendet MyFitCoach die bisherigen Makros des Athleten als Ausgangspunkt. Alternativ berechnet MyFitCoach die Startmakros basierend auf allen körperlichen Daten des Athleten.

Der Athlet trackt die gegessenen Makros und das Körpergewicht täglich in der App und MyFitCoach lernt den Athleten auf Basis dieser Daten kennen und passt die Kalorien und Makros basierend auf der durchschnittlichen Körpergewichts-Entwicklung wöchentlich an.

QUALITÄT DER EVIDENZ

Fitness und Bodybuilding sind von Anekdoten und Bro-Tipps Einzelner nur so überflutet. Auf YouTube findet man Autoritäten für so ziemlich jeden Standpunkt, den man sich nur ausdenken kann. Nur weil jemand sich einen beeindruckenden Körper aufgebaut hat, bedeutet das noch lange nicht, dass er/sie weiß, was für andere Athleten funktioniert.

Damit unsere Athleten die bestmöglichen Resultate erzielen, haben wir unser Coaching einer wissenschaftlichen Grundlage verschrieben. Demnach versuchen wir möglichst jede unserer Coaching-Entscheidungen wissenschaftlich begründen zu können.

Damit du dir ein Bild unser aktuellen wissenschaftlichen Entscheidungsgrundlage machen kannst, haben wir eine Auflistung der von MyFitCoach verwendeten Studien gemacht und diese in sinnvolle Kategorien unterteilt.

Offensichtlich wiegt nicht jede Art von Evidenz gleich schwer. Meta-Analysen und systematische Reviews sind weitaus bessere Evidenz als mechanistische Studien oder Autoritätenmeinungen. Deshalb haben wir innerhalb der einzelnen Kategorien nochmal in Primär- und Sekundär-Quellen unterschieden.

Trainings-wissenschaftliche Grundlage

Primär-Quellen:

Bartholomew, J.B., et al., Strength gains after resistance training: the effect of stressful, negative life events. J Strength Cond Res. 22(4): p. 1215-21, 2008.

Colquhoun, R.J., et al., Comparison of powerlifting performance in trained men using traditional and flexible daily undulating periodization. J Strength Cond Res. 31(2): p. 283–91, 2017.

Scott, Warren A., Maximizing performance and the prevention of injuries in competitive athletes.‘ Current sports medicine reports. 1(3): p. 184-190, 2002.

 

Sekundär-Quellen:

Aasa, U., et al., Injuries among weightlifters and powerlifters: a systematic review. Br J Sports Med. 51(4): p. 211–19, 2017.

Fishbach, A. and J. Choi, When thinking about goals undermines goal pursuit. Organizational Behavior and Human Decision Processes. 118(2): p. 99-107, 2012.

McNamara, J.M. and D.J. Stearne, Flexible Nonlinear Periodization in a Beginner College Weight Training Class. Journal of Strength & Conditioning Research. 24(1): p. 17-22, 2010.

Hunter, G.R., Changes in body composition, body build and performance associated with different weight training frequencies in males and females. Strength Cond J. 7(1): p. 26–8, 1985.

Carvalho, A.D., and Rodrigues, S.J., Nonconsecutive versus consecutive-day resistance training in recreationally trained subjects. J Sports Med Phys Fitness. 58(3): p. 233–40, 2018.

Yang, Y., et al., Effects of Consecutive versus Nonconsecutive Days of Resistance Training on Strength, Body Composition and Red Blood Cells. Front Physiol. 18(9): p. 725, 2018.

Richards, J., et al., Don’t worry, be happy: cross-sectional associations between physical activity and happiness in 15 European countries. BMC Public Health. 15(1): p. 53, 2015.

Yorks, D.M., Frothingham, C.A., and Schuenke, M.D., Effects of Group Fitness Classes on Stress and Quality of Life of Medical Students. J Am Osteopath Assoc. 117(11): e17–25, 2017.

Robineau, J., et al., Specific training effects of concurrent aerobic and strength exercises depend on recovery duration. J Strength Cond Res. 30(3): p. 672–83, 2016.

Keogh, J.W. and P.W. Winwood, The Epidemiology of Injuries Across the Weight-Training Sports. Sports Med. 47(3): p. 479–501, 2017.

Cumps, E., Verhagen, E., Meeusen, R., Prospective epidemiological study of basketball injuries during one competitive season: ankle sprains and overuse knee injuries. J Sports Sci Med. 6(2): p. 204, 2007.

Primär-Quellen:

Mark D Peterson, Matthew R Rhea, and Brent A Alvar. Maximizing strength development in athletes: a meta-analysis to determine the dose-response relationship. The Journal of Strength & Conditioning Research. 18(2): p. 377-382, 2004.

Ralston, et al., The effect of weekly set volume on strength gain: a meta-analysis. Sports Med. 47(12): p. 2585–601, 2017.

Schoenfeld, B.J., Ogborn, D., Krieger, J.W., Dose-response relationship between weekly resistance training volume and increases in muscle mass: A systematic review and meta-analysis. J Sports Sci. 35(11): p. 1073–82.7, 2017.

Baz-Valle, E.N., Fontes-Villalba, M., Santos-Concejero, J., Total Number of Sets as a Training Volume Quantification Method for Muscle Hypertrophy: A Systematic Review. J Strength Cond Res. [Epub ahead of print], 2018.

Mathias Wernbom, Jesper Augustsson, and Roland Thomee. The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports medicine. 37(3): p. 225–264, 2007.

Eric R. Helms, Andrea Valdez, and Andy Morgan. The muscle and strength training pyramid 2. 2019.

Heaselgrave, S.R., et al., Dose-Response of Weekly Resistance Training Volume and Frequency on Muscular Adaptations in Trained Males. Int J Sports Physiol Perform. [Epub ahead of print]: p. 1–28, 2018.

 

Sekundär-Quellen:

Lixandrão, M.E., et al., Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associated with blood-flow restriction: a systematic review and meta-analysis. Sports Med. 48(2): p. 361-78, 2018.

Daniel W Robbins, Paul WM Marshall, and Megan McEwen. The effect of training volume on lower-body strengthThe Journal of Strength & Conditioning Research. 26(1): p. 34–39, 2012.

Regis Radaelli, Steven J Fleck, Thalita Leite, Richard D Leite, Ronei S Pinto, Liliam Fernandes, and Roberto Simao. Dose-response of 1, 3, and 5 sets of resistance exercise on strength, local muscular endurance, and hypertrophy. The Journal of Strength & Conditioning Research. 29(5): p. 1349–1358, 2015.

Gerson E Campos, Thomas J Luecke, Heather K Wendeln, Kumika Toma, Fredrick C Hagerman, Thomas F Murray, Kerry E Ragg, Nicholas A Ratamess, William J Kraemer, and Robert S Staron. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. European journal of applied physiology. 88(1-2): p. 50–60, 2002.

Juan J Gonzalez-Badillo, Esteban M Gorostiaga, Raul Arellano, and Mikel Izquierdo. Moderate resistance training volume produces more favorable strength gains than high or low volumes during a short-term training cycle. The Journal of Strength & Conditioning Research. 19(3): p. 689–697, 2005.

Loren ZF Chiu and Jacque L Barnes. The fitness-fatigue model revisited: Implications for planning short-and long-term training. Strength & Conditioning Journal. 25(6): p. 42–51, 2003.

Fry, Andrew C., and William J. Kraemer. ‚Resistance exercise overtraining and overreaching.‘ Sports medicine. 23(2): p. 106-129, 1997.

Brad J Schoenfeld, Nicholas A Ratamess, Mark D Peterson, Bret Contreras, GT Sonmez, and Brent A Alvar. Effects of different volume-equated resistance training loading strategies on muscular adaptations in well-trained men. The Journal of Strength & Conditioning Research.  28(10): p. 2909–2918, 2014.

Matthew R Rhea, Stephen D Ball, Wayne T Phillips, and Lee N Burkett. A comparison of linear and daily undulating periodized programs with equated volume and intensity for strength. The Journal of strength & conditioning research. 16(2): p. 250-255, 2002.

Schoenfeld, B.J., et al.,. Differential effects of heavy versus moderate loads on measures of strength and hypertrophy in resistance-trained men. J Sports Sci Med. 15(4): p. 715, 2016.

Robbins, D.W., P.W. Marshall, and M. McEwen, The effect of training volume on lower- body strength. J Strength Cond Res. 26(1): p. 34–9, 2012.

Amirthalingam T., et al.,. Effects of a modified German volume training program on muscular hypertrophy and strength. J Strength Cond Res. 31(11): p. 3109–19, 2017.

Hackett D.A., et al., Effects of a 12-Week Modified German Volume Training Program on Muscle Strength and Hypertrophy—A Pilot Study. Sports. 6(1): p. 7 ,2018.

Pistilli, E.E., et al., Incorporating one week of planned overreaching into the training program of weightlifters. Strength Cond J. 30(6): p. 39–44, 2008.

Helms, E.R., et al., Recommendations for natural bodybuilding contest preparation: resistance and cardiovascular training. J Sports Med Phys Fitness. 55(3): p. 164, 2015.

Schoenfeld, B.J., et al., Resistance Training Volume Enhances Muscle Hypertrophy. Med Sci Sports Exerc. [Epub ahead of print], 2018.

Primär-Quellen:

Davies, T., et al., Erratum to: Effect of Training Leading to Repetition Failure on Muscular Strength: A Systematic Review and Meta-Analysis. Sports Med. 46(4): p. 605–10, 2016.

Schoenfeld, B.J., et al., Strength and Hypertrophy Adaptations Between Low- vs. High-Load Resistance Training: A Systematic Review and Meta-analysis. J Strength Cond Res. 31(12): p. 3508–23, 2017.

Brad J Schoenfeld, Mark D Peterson, Dan Ogborn, Bret Contreras, and Gul T Sonmez. Effects of low- vs. high-load resistance training on muscle strength and hypertrophy in well-trained men. The Journal of Strength & Conditioning Research. 29(10): p. 2954–2963, 2015.

Michael C Zourdos, Alex Klemp, Chad Dolan, Justin M Quiles, Kyle A Schau, Edward Jo, Eric Helms, Ben Esgro, Scott Duncan, Sonia Garcia Merino, et al. Novel resistance training–specific rating of perceived exertion scale measuring repetitions in reserve. The Journal of Strength & Conditioning Research. 30(1): p. 267–275, 2016.

Schoenfeld, B.J., et al., Muscular adaptations in low- versus high-load resistance training: A meta-analysis. Eur J Sport Sci. P. 1–10, 2014.

 

Sekundär-Quellen:

Lars Holm, Søren Reitelseder, Troels Gravers Pedersen, Simon Doessing, Susanne Germann Petersen, Allan Flyvbjerg, Jesper Loevind Andersen, Per Aagaard, and Michael Kjaer. Changes in muscle size and mhc composition in response to resistance exercise with heavy and light loading intensity. Journal of applied physiology. 105(5): p. 1454–1461, 2008.

ER Helms, Peter J Fitschen, AA Aragon, John Cronin, and Brad J Schoenfeld. Recommendations for natural bodybuilding contest preparation: resistance and cardiovascular training. Journal of Sports Medicine Physical Fitness. 55(3): p. 164–178, 2015.

Andrew C Fry. The role of resistance exercise intensity on muscle fibre adaptations. Sports medicine. 34(10): p. 663–679, 2004.

Mikel Izquierdo, Javier Ibanez, Juan Jose Gonzalez-Badillo, Keijo Hakkinen, Nicholas A ¨Ratamess, William J Kraemer, Duncan N French, Jesus Eslava, Aritz Altadill, Xabier Asiain,et al. Differential effects of strength training leading to failure versus not to failure on hormonal responses, strength, and muscle power gains. Journal of Applied Physiology. 100(5): p. 1647–1656, 2006.

Olivier Roger Seynnes, Maarten de Boer, and Marco Vincenzo Narici. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. Journal of Applied Physiology. 102(1): p. 368–373, 2007.

Snyder, Benjamin J., and Wesley R. Fry. ‚Effect of verbal instruction on muscle activity during the bench press exercise.‚ The Journal of Strength & Conditioning Research. 26(9): p. 2394-2400, 2012.

Ciaran M Fairman, Eric R Helms, and Brian C Focht. Resistance exercise prescription using rate of perceived exertion in exercise oncology-a novel concept: 1287 board# 8 june 2, 8: 00 am-10: 00 am. Medicine and science in sports and exercise. 48(5 Suppl 1): p. 334, 2016.

Eric R Helms, John Cronin, Adam Storey, and Michael C Zourdos. Application of the repetitions in reserve-based rating of perceived exertion scale for resistance training. Strength & Conditioning Journal, 2016.

West, Daniel WD, and Stuart M. Phillips. ‚Associations of exercise-induced hormone profiles and gains in strength and hypertrophy in a large cohort after weight training.‘ European journal of applied physiology. 112(7): p. 2693-2702, 2012.

Richens, B. and D.J. Cleather, The relationship between the number of repetitions performed at given intensities is different in endurance and strength-trained athletes. Biol Sport. 31(2): p. 157–161, 2014.

Morán-Navarro R., et al., Time course of recovery following resistance training leading or not to failure. Eur J Appl Physiol. 117(12): p. 2387–99, 2017.

Zourdos, M.C., et al., Efficacy of daily one-repetition maximum training in well-trained powerlifters and weightlifters: a case series. Nutrición Hospitalaria. 33(2): p. 437–43, 2016.

Pareja-Blanco, F., et al., Time Course of Recovery From Resistance Exercise With Different Set Configurations. J Strength Cond Res. [Epub ahead of print], 2018.

Gonzalez-Badillo, J.J., M. Izquierdo, and E.M. Gorostiaga, Moderate volume of high relative training intensity produces greater strength gains compared with low and high volumes in competitive weightlifters. J Strength Cond Res. 20(1): p. 73–81, 2006.

Lasevicius, T., et al., Effects of different intensities of resistance training with equated volume load on muscle strength and hypertrophy. Eur J Sport Sci. 18(6): p. 772–80, 2018.

Perlmutter, J.H., et al., Total Repetitions Per Set Effects Repetitions in Reserve-based Rating of Perceived Exertion Accuracy: 3648 Board #95 June 3 8:00 AM – 9:30 AM. Med Sci Sports Exerc. 49(5S): p. 1043 , 2017.

Lima, B.M., et al., Planned Load Reduction Versus Fixed Load: A Strategy to Reduce the Perception of Effort With Similar Improvements in Hypertrophy and Strength. Int J Sports Physiol Perform. [Epub ahead of print], 2018.

Primär-Quellen:

Brad J Schoenfeld, Dan Ogborn, and James W Krieger. Effects of resistance training frequency on measures of muscle hypertrophy: A systematic review and meta-analysis. Sports Medicine. p. 1–9, 2016.

Grgic, J., et al., Effect of resistance training frequency on gains in muscular strength: a systematic review and meta-analysis. Sports Med. 48(5): p. 1207–20, 2018.

Brad J Schoenfeld, Nicholas A Ratamess, Mark D Peterson, Bret Contreras, and Gul TiryakiSonmez. Influence of resistance training frequency on muscular adaptations in well-trained men. The Journal of Strength & Conditioning Research. 29(7): p. 1821–1829, 2015.

Ralston, G.W., et al., Weekly Training Frequency Effects on Strength Gain: A Meta-Analysis. Sports Medicine-Open. 4(1): p. 36, 2018.

 

Sekundär-Quellen:

Darren G Candow and Darren G Burke. Effect of short-term equal-volume resistance training with different workout frequency on muscle mass and strength in untrained men and women. The Journal of Strength & Conditioning Research. 21(1): p. 204–207, 2007.

J Duncan MacDougall, Martin J Gibala, Mark A Tarnopolsky, Jay R MacDonald, Stephen A Interisano, and Kevin E Yarasheski. The time course for elevated muscle protein synthesis following heavy resistance exercise. Canadian journal of applied physiology. 20(4): p. 480–486, 1995.

Stuart M Phillips, KEVIN D Tipton, ASLE Aarsland, Steven E Wolf, and Robert R Wolfe. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. American Journal of Physiology-Endocrinology And Metabolism. 273(1): E99–E107, 1997.

T. Raastad. Powerlifters improved strength and muscular adaptations to a greater extent when equal total training volume was divided into 6 compared to 3 training sessions per week. 2012.

John R McLester, E Bishop, ME Guilliams, et al. Comparison of 1 day and 3 days per week of equal-volume resistance training in experienced subjects. The Journal of Strength & Conditioning Research. 14(3): p. 273–281, 2000.

Hartman, M.J., et al., Comparisons between twice-daily and once-daily training sessions in male weight lifters. Int J Sports Physiol Perform. 2(2): p. 159–69, 2007.

Hakkinen, K. and M. Kallinen, Distribution of strength training volume into one or two daily sessions and neuromuscular adaptations in female athletes. Electromyogr Clin Neurophysiol. 34(2): p. 117–24, 1994.

Hakkinen, K. and A. Pakarinen, Serum hormones in male strength athletes during intensive short-term strength training. Eur J Appl Physiol Occup Physiol. 63(3–4): p. 194-9, 1991.

Nuckols, Greg. “Training Frequency for Strength Development: What the Data Say.”. www.strongerbyscience.com/training-frequency/, 2018

Primär-Quellen:

Mann, J.B. et al. The effect of autoregulatory progressive resistance exercise vs. linear periodization on strength improvement in college athletes. J Strength Cond Res. 24(7): p. 1718–1723, 2010.

Timmons, J.A., Variability in training-induced skeletal muscle adaptation. J Appl Physiol. 110(3): p. 846–53, 2011.

Pritchard, H., et al., Effects and Mechanisms of Tapering in Maximizing Muscular Strength. Strength Cond J. 37(2): p. 72–83, 2015.

 

Sekundär-Quellen:

Baker, D.G., 10-year changes in upper body strength and power in elite professional rugby league players–the effect of training age, stage, and content. J Strength Cond Res. 27(2): p. 285–92, 2013.

Issurin,V.B., New horizons for the methodology and physiology of training periodization. Sports Med. 40(3): p. 189–206, 2010.

Zourdos, M.C., et al., Novel resistance training–specific rating of perceived exertion scale measuring repetitions in reserve. J Strength Cond Res. 30(1): p. 267–75, 2016.

Hackett, D.A., et al., A novel scale to assess resistance-exercise effort. J Sports Sci. 30(13): p. 1405–13, 2012.

Helms, E.R., et al., Recommendations for natural bodybuilding contest preparation: resistance and cardiovascular training. J Sports Med Phys Fitness. 55(3): p. 164-78, 2015.

Buford, T.W., et al., A comparison of periodization models during nine weeks with equated volume and intensity for strength. J Strength Cond Res. 21(4): p. 1245– 50, 2007.

Kok, L.Y., P.W. Hamer, and D.J. Bishop, Enhancing muscular qualities in untrained women: linear versus undulating periodization. Med Sci Sports Exerc. 41(9): p. 1797–807, 2009.

Monteiro, A.G., et al., Nonlinear periodization maximizes strength gains in split resistance training routines. J Strength Cond Res. 23(4): p. 1321–6, 2009.

Painter, K.B., et al., Strength gains: block versus daily undulating periodization weight training among track and field athletes. Int J Sports Physiol Perform. 7(2): p. 161–9, 2012.

Rhea, M.R., et al., A comparison of linear and daily undulating periodized programs with equated volume and intensity for strength. J Strength Cond Res. 16(2): p. 250–5, 2002.

Prestes, J., et al., Comparison of linear and reverse linear periodization effects on maximal strength and body composition. J Strength Cond Res.. 23(1): p. 266–74. 2009

Willoughby, D.S., The effects of mesocycle-length weight training programs involving periodization and partially equated volumes on upper and lower body strength. J Strength Cond Res. 7(1): p. 2–8, 1993.

Zourdos, M.C., et al., Modified Daily Undulating Periodization Model Produces Greater Performance Than a Traditional Configuration in Powerlifters. J Strength Cond Res. 30(3): p. 784–91, 2016.

Bartolomei, S., et al., A comparison of traditional and block periodized strength training programs in trained athletes. J Strength Cond Res. 28(4): p. 990–7, 2014.

Kiely, J., Periodization paradigms in the 21st century: evidence-led or tradition-driven? Int J Sports Physiol Perform. 7(3): p. 242–50, 2012.

Kiely, J., New horizons for the methodology and physiology of training periodization: block periodization: new horizon or a false dawn? Sports Med. 40(9): p. 803–5; author reply 805–7, 2010.

Tsoukos, A., et al., Delayed Effects of a Low-Volume, Power-Type Resistance Exercise Session on Explosive Performance. J Strength Cond Res. 32(3): p. 643–50, 2018.

Primär-Quellen:

dos Santos, W.D., et al., Effects of Variable Resistance Training on Maximal Strength: A Meta-analysis. J Strength Cond Res. 32(11): e52-5, 2018.

Simao, R., et al., Exercise order in resistance training. Sports Med. 42(3): p. 251–65, 2012.

Rauch, J.T., et al., Auto-regulated exercise selection training regimen produces small increases in lean body mass and maximal strength adaptations in strength-trained individuals. J Strength Cond Res. [Epub ahead of print], 2017.

Eric R. Helms, Andrea Valdez, and Andy Morgan. The muscle and strength training pyramid 2. 2019.

Kompf, J., Arandjelović, O., Understanding and overcoming the sticking point in resistance exercise. Sports Med. 46(6): p. 751-62, 2016.

 

Sekundär-Quellen:

Boeckh-Behrens, W.U. and Buskies, W., Fitness-Krafttraining. Die besten Übungen und Methoden für Sport und Gesundheit (Fitness – Strength Training: The Best Exercises And Methods For Sports And Health). Hamburg, 2000.

Botton, C.E., Wilhelm, E.N., Ughini CE. Electromyographical analysis of the deltoid between different strength training exercises. Medicina Sportiva. 17(2): p. 67–71, 2013.

Landin, D. and M. Thompson, The shoulder extension function of the triceps brachii. J Electromyogr Kinesiol. 21(1): p. 161–5, 2011.

Marchetti, P.H. and M.C. Uchida, Effects of the pullover exercise on the pectoralis major and latissimus dorsi muscles as evaluated by EMG. J Appl Biomech. 27(4): p. 380-4, 2011.

Stone, M., S. Plisk, and D. Collins, Training principles: evaluation of modes and methods of resistance training–a coaching perspective. Sports Biomech. 1(1): p. 79–103, 2002.

Chilibeck, P.D., et al., A comparison of strength and muscle mass increases during resistance training in young women. Eur J Appl Physiol Occup Physiol. 77(1–2): p. 170–5, 1998.

Seynnes, O.R., M. de Boer, and M.V. Narici, Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol. 102(1): p. 368–73, 2007.

Fry, A.C., The role of resistance exercise intensity on muscle fiber adaptations. Sports Med. 34(10): p. 663–79, 2004.

Helms, E.R., et al., Recommendations for natural bodybuilding contest preparation: resistance and cardiovascular training. J Sports Med Phys Fitness, 2014.

Fonseca, R.M., et al., Changes in exercises are more effective than in loading schemes to improve muscle strength. J Strength Cond Res. 28(11): p. 3085-92, 2014.

Woodley, S.J. and S.R. Mercer, Hamstring muscles: architecture and innervation. Cells, Tissues, Organs. 179(3): p. 125–41, 2005.

Glass, S.C. and T. Armstrong, Electromyographical activity of the pectoralis muscle during incline and decline bench presses. J Strength Cond Res. 11(3): p. 163–167, 1997.

Antonio, J., Nonuniform response of skeletal muscle to heavy resistance training: Can bodybuilders induce regional muscle hypertrophy? J Strength Cond Res. 14(1): p. 102–113, 2000.

Schoenfeld, B.J., The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res. 24(10): p. 2857–72, 2010.

Snyder, B.J. and J.R. Leech, Voluntary increase in latissimus dorsi muscle activity during the lat pull-down following expert instruction. J Strength Cond Res. 23(8): p. 2204–9, 2009.

Kubo, T., Hirayama, K., Nakamura, N. and Higuchi, M., Influence of Different Loads on Force-Time Characteristics during Back Squats. J Sports Sci Med. 17(4): p. 617-22, 2018.

Kubo, T., Hirayama, K., Nakamura, N. and Higuchi, M., Effect of Accommodating Elastic Bands on Mechanical Power Output during Back Squats. Sports. 6(4): p. 151, 2018.

Peltonen, H., et al., Increased rate of force development during periodized maximum strength and power training is highly individual. Eur J Appl Physiol. 118(5): p. 1033-42, 2018.

Snyder, B.J. and W.R. Fry, Effect of verbal instruction on muscle activity during the bench press exercise. J Strength Cond Res. 26(9): p. 2394–400, 2012.

Simão, R., et al., Influence of exercise order on repetition performance during low-intensity resistance exercise. Res Sports Med. 20(3–4): p. 263–273, 2012.

Paulo Gentil, Saulo Soares, and Martim Bottaro. Single vs. multi-joint resistance exercises: Effects on muscle strength and hypertrophy. Asian journal of sports medicine. 6(2), 2015.

Hughes, L., et al., Blood flow restriction training in clinical musculoskeletal rehabilitation: a systematic review and meta-analysis. Br J Sports Med. 51(13): p. 1003–11, 2017

Primär-Quellen:

Grgic, J., et al., Effects of rest interval duration in resistance training on measures of muscular strength: a systematic review. Sports Med. 48(1): p. 137–51, 2018.

Morán-Navarro, R., et al., Time course of recovery following resistance training leading or not to failure. Eur J Appl Physiol. 117(12): p. 2387–99, 2017.

Grgic, J., et al., The effects of short versus long inter-set rest intervals in resistance training on measures of muscle hypertrophy: A systematic review. Eur J Sport Sci. 17(8): p. 983–93, 2017.

 

Sekundär-Quellen:

Schoenfeld, B.J., Postexercise hypertrophic adaptations: a reexamination of the hormone hypothesis and its applicability to resistance training program design. J Strength Cond Res. 27(6): p. 1720-30, 2013.

Loenneke, J.P., et al., Blood flow restriction: the metabolite/volume threshold theory. Med Hypotheses. 77(5): p. 748-52, 2011.

Phillips, S.M., Physiologic and molecular bases of muscle hypertrophy and atrophy: impact of resistance exercise on human skeletal muscle (protein and exercise dose effects). Appl Physiol Nutr Metab. 34(3): p. 403- 10, 2009.

West, D.W. and S.M. Phillips, Anabolic processes in human skeletal muscle: restoring the identities of growth hormone and testosterone. Phys Sportsmed. 38(3): p. 97-104, 2010.

West, D.W., et al., Elevations in ostensibly anabolic hormones with resistance exercise enhance neither training-induced muscle hypertrophy nor strength of the elbow flexors. J Appl Physiol (1985). 108(1): p. 60-7, 2010.

West, D.W., et al., Resistance exercise-induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. J Physiol. 587(Pt 21): p. 5239–47, 2009.

West, D.W. and S.M. Phillips, Associations of exercise-induced hormone profiles and gains in strength and hypertrophy in a large cohort after weight training. Eur J Appl Physiol. 112(7): p. 2693–702, 2012.

Ehrnborg, C., et al., Supraphysiological growth hormone: less fat, more extracellular fluid but uncertain effects on muscles in healthy, active young adults. Clin Endocrinol. 62(4): p. 449–57, 2005.

Buresh, R., K. Berg, and J. French, The effect of resistive exercise rest interval on hormonal response, strength, and hypertrophy with training. J Strength Cond Res. 23(1): p. 2–5, 2009.

Schoenfeld, B.J., The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res. 24(10): p. 2857–72, 2010.

Schoenfeld, B.J., et al., Effects of Low- Versus High-Load Resistance Training on Muscle Strength and Hypertrophy in Well-Trained Men. J Strength Cond Res, 2015.

Schoenfeld, B.J., Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med. 43(3): p. 179–94, 2013.

Helms, E.R., et al., Recommendations for natural bodybuilding contest preparation: resistance and cardiovascular training. J Sports Med Phys Fitness. 55(3): p. 164–78, 2015.

de Salles, B.F., et al., Rest interval between sets in strength training. Sports Med. 39(9): p. 765–77, 2009.

Villanueva, M.G., C.J. Lane, and E.T. Schroeder, Short rest interval lengths between sets optimally enhance body composition and performance with 8 weeks of strength resistance training in older men. Eur J Appl Physiol. 115(2): p. 295–308, 2015.

Henselmans, M. and B.J. Schoenfeld, The effect of inter-set rest intervals on resistance exercise-induced muscle hypertrophy. Sports Med. 44(12): p. 1635–43, 2014.

Flann, K.L., et al., Muscle damage and muscle remodeling: no pain, no gain? J Exp Biol. 214(Pt 4): p. 674–9, 2011.

Zourdos, M.C., et al., The repeated bout effect in muscle-specific exercise variations. J Strength Cond Res, 2015.

Clarkson, P.M., K. Nosaka, and B. Braun, Muscle function after exercise-induced muscle damage and rapid adaptation. Med Sci Sports Exerc. 24(5): p. 512–20, 1992.

Paulsen, G., et al., Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exerc Immunol Rev. 18: p. 42–97, 2012.

de Souza, T.P.J., et al., Comparison Between constant and decreasing rest intervals: influence on maximal strength and hypertrophy. J Strength Cond Res. 24(7): p. 1843–1850, 2010.

Ahtiainen, J.P., et al., Short vs. long rest period between the sets in hypertrophic resistance training: Influence on muscle strength, size, and hormonal adaptations in trained men. J Strength Cond Res. 19(3): p. 572–582, 2005.

Schoenfeld, B.J., et al., Effects of different volume-equated resistance training loading strategies on muscular adaptations in well-trained men. J Strength Cond Res. 28(10): p. 2909-18, 2014.

Robbins, D.W., W.B. Young, and D.G. Behm, The effect of an upper-body agonist- antagonist resistance training protocol on volume load and efficiency. J Strength Cond Res. 24(10): p. 2632–40, 2010.

Robbins, D.W., et al., Agonist-antagonist paired set resistance training: a brief review. J Strength Cond Res,. 24(10): p. 2873–82 2010.

Maia, M.F., et al., Effects of different rest intervals between antagonist paired sets on repetition performance and muscle activation. J Strength Cond Res. 28(9): p. 2529–35, 2014.

Ciccone, A.B., et al., Effects of traditional vs. alternating whole-body strength training on squat performance. J Strength Cond Res. 28(9): p. 2569–77, 2014.

Ozaki, H., et al., Effects of drop sets with resistance training on increases in muscle CSA, strength, and endurance: a pilot study. J Sports Sci. 36(6): p. 691–6, 2018.

Prestes, J., et al., Strength And Muscular Adaptations Following 6 Weeks Of Rest-Pause Versus Traditional Multiple-Sets Resistance Training In Trained Subjects. J Strength Cond Res. [Epub ahead of print], 2017.

Primär-Quellen:

Roig, M., et al., The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: a systematic review with meta-analysis. Br J Sports Med. 43(8): p. 556–68, 2009.

Schoenfeld, B.J., D.I. Ogborn, and J.W. Krieger, Effect of repetition duration during resistance training on muscle hypertrophy: a systematic review and meta-analysis. Sports Med. 45(4): p. 577–85, 2015.

Schoenfeld, B.J., et al., Hypertrophic effects of concentric vs. eccentric muscle actions: a systematic review and meta-analysis. J Strength Cond Res. 31(9): p. 2599–608, 2017.

Buskard, A.N., Gregg, H.R., Ahn, S., Supramaximal Eccentrics Versus Traditional Loading in Improving Lower-Body 1RM: A Meta-Analysis. Res Q Exerc Sport. 89(3): p. 340–6, 2018.

Lim, H.Y., Wong, S.H., Effects of isometric, eccentric, or heavy slow resistance exercises on pain and function in individuals with patellar tendinopathy: A systematic review. Physiother Res Int. 23(4): E1721, 2018.

 

Sekundär-Quellen:

Garhammer, J., A review of power output studies of Olympic and powerlifting: Methodology, performance prediction, and evaluation tests. J Strength Cond Res. 7(2): p. 76–89, 1993.

Zourdos, M.C., et al., Novel Resistance Training-Specific RPE Scale Measuring Repetitions in Reserve. J Strength Cond Res. 30(1): p. 267-75, 2016.

Mohamad, N.I., J.B. Cronin, and K.K. Nosaka, Difference in kinematics and kinetics between high- and low-velocity resistance loading equated by volume: implications for hypertrophy training. J Strength Cond Res. 26(1): p. 269–75, 2012.

Headley, S.A., et al., Effects of lifting tempo on one repetition maximum and hormonal responses to a bench press protocol. J Strength Cond Res. 25(2): p. 406–13, 2011.

Westcott, W.L., et al., Effects of regular and slow speed resistance training on muscle strength. J Sports Med Phys Fitness. 41(2): p. 154–8, 2001.

Hunter, G.R., D. Seelhorst, and S. Snyder, Comparison of metabolic and heart rate responses to super slow vs. traditional resistance training. J Strength Cond Res. 17(1): p. 76–81, 2003.

Kim, E., et al., Effects of 4 weeks of traditional resistance training vs. superslow strength training on early phase adaptations in strength, flexibility, and aerobic capacity in college-aged women. J Strength Cond Res. 25(11): p. 3006–13, 2011.

Keeler, L.K., et al., Early-phase adaptations of traditional-speed vs. superslow resistance training on strength and aerobic capacity in sedentary individuals. J Strength Cond Res. 15(3): p. 309–314, 2001.

Neils, C.M., et al., Influence of contraction velocity in untrained individuals over the initial early phase of resistance training. J Strength Cond Res. 19(4): p. 883–887, 2005.

Gonzalez-Badillo, J.J., et al., Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half- velocity training. Eur J Sport Sci. 14(8): p. 772–81, 2014.

K Bloomquist, Henning Langberg, Stine Karlsen, S Madsgaard, M Boesen, and Truls Raastad. Effect of range of motion in heavy load squatting on muscle and tendon adaptations. European journal of applied physiology. 113(8): p. 2133–2142, 2013.

Ronei S Pinto, Naiara Gomes, Regis Radaelli, Cıntia E Botton, Lee E Brown, and Martim Bottaro. Effect of range of motion on muscle strength and thickness. The Journal of Strength & Conditioning Research. 26(8): p. 2140–2145, 2012.

Behm, D.G., Neuromuscular implications and applications of resistance training. J Strength Cond Res. 9(4): p. 264–74, 1995.

Sale, D.G., Neural adaptation to resistance training. Med Sci Sports Exerc. 20(5 Suppl): p. S135–45, 1988.

Gerard E McMahon, Christopher I Morse, Adrian Burden, Keith Winwood, and Gladys L Onambele. Impact of range of motion during ecologically valid resistance training protocols ´ on muscle size, subcutaneous fat, and strength. The Journal of Strength & Conditioning Research. 28(1): p. 245–255, 2014.

Gerard E McMahon, Gladys L Onambele-Pearson, Christopher I Morse, Adrian M Burden, ´ and Keith Winwood. How deep should you squat to maximise a holistic training response? electromyographic, energetic, cardiovascular, hypertrophic and mechanical evidence. 2013.

Tim N Shepstone, Jason E Tang, Stephane Dallaire, Mark D Schuenke, Robert S Staron, and Stuart M Phillips. Short-term high-vs. low-velocity isokinetic lengthening training results in greater hypertrophy of the elbow flexors in young men. Journal of Applied Physiology. 98(5): p. 1768–1776, 2005.

Daniel R Moore, Stuart M Phillips, John A Babraj, Kenneth Smith, and Michael J Rennie. Myofibrillar and collagen protein synthesis in human skeletal muscle in young men after maximal shortening and lengthening contractions. American Journal of PhysiologyEndocrinology and Metabolism. 288(6): E1153–E1159, 2005

Primär-Quellen:

Kay, AD and AJ Blazevich, Effect of acute static stretch on maximal muscle performance: a systematic review. med sci sports exerc. 44(1): p. 154-164, 2012.

 

Sekundär-Quellen:

Shellock, FG and WE Prentice, Warming-up and stretching for improved physical performance and prevention of sports-related injuries. Sports med. 2(4): p. 267-78, 1985.

McHugh MP, et al, To stretch or not to stretch: the role of stretching in injury prevention and performance. Scand J med sci sports. 20(2): p. 169-81, 2010.

Behm, DG, et al, A review of the acute effects of static and dynamic stretching on performance. Eur J appl physiol. 111(11): p. 2633-51, 2011.

MacDonald, GZ, et al., An acute bout of self-myofascial release increases range of motion without a subsequent decrease in muscle activation or force. The Journal of strength & conditioning research. 27(3): p. 812-821, 2013.

Primär-Quellen:

Eric R. Helms, Andrea Valdez, and Andy Morgan. The muscle and strength training pyramid 2. 2019

 

Sekundär-Quellen:

Bartholomew, J.B., et al., Strength gains after resistance training: the effect of stressful, negative life events. J strength cond res. 22(4): p. 1215-21, 2008.

Alhola, Paula, and Päivi Polo-Kantola. ‚Sleep deprivation: Impact on cognitive performance.‘ Neuropsychiatric disease and treatment. 3(5): p. 553, 2007.

Dattilo, Murilo, et al. ‚Sleep and muscle recovery: endocrinological and molecular basis for a new and promising hypothesis.‘ Medical hypotheses. 77(2): p. 220-222,  2011.

Chaput, Jean-Philippe, and Angelo Tremblay. ‚Adequate sleep to improve the treatment of obesity.‘ Canadian Medical Association Journal. 184(18): p.  1975-1976, 2012.

Nedeltcheva, Arlet V., et al. ‚Insufficient sleep undermines dietary efforts to reduce adiposity.‘ Annals of internal medicine. 153(7): p.  435-441, 2010.

Ernährungs-Wissenschaftliche Grundlage

Primär-Quellen:

Peterson, M.D., M.R. Rhea, and B.A. Alvar, Applications of the dose- response for muscular strength development: a review of meta-analytic efficacy and reliability for designing training prescription. J Strength Cond Res. 19(4): p. 950–8, 2005.

Fagerberg, P., Negative consequences of low energy availability in natural male bodybuilding: a review. Int J Sport Nutr Exerc Metab. 28(4): p.385–402, 2018.

Hall, Kevin D. ‚What is the required energy deficit per unit weight loss?.‘ International Journal of Obesity. 32(3): p. 573-576, 2008.

Helms, E.R., A.A. Aragon, and P.J. Fitschen, Evidence-based recommendations for natural bodybuilding contest preparation: nutrition and supplementation. J Int Soc Sports Nutr. 11: p. 20, 2014.

Eric R. Helms, Andrea Valdez, and Andy Morgan. The muscle and strength nutrition pyramid 2. 2019.

 

Sekundär-Quellen:

Ina Garthe, Truls Raastad, Per Egil Refsnes, and Jorunn Sundgot-Borgen. Effect of nutritional intervention on body composition and performance in elite athletes. European Journal of Sport Science. 13(3): p. 295-303,PMID: 23679146, 2013.

Gilbert B. Forbes. Body fat content influences the body composition response to nutrition and exercise. Annals of the New York Academy of Sciences. 904(1): p. 359-365, 2000.

A. J. Tomiyama, T. Mann, D. Vinas, J. M. Hunger, J. DeJager, and S. E Taylor. Low calorie dieting increases cortisol. Psychosomatic Medicine. P. 357-364, 2010.

Stefan M. Pasiakos, Lisa M. Vislocky, John W. Carbone, Nicholas Altieri, Karen Konopelski, Hedley C. Freake, Jeffrey M. Anderson, Arny A. Ferrando, Robert R. Wolfe, and Nancy R. Rodriguez. Acute energy deprivation affects skeletal muscle protein synthesis and associated intracellular signaling proteins in physically active adults. The Journal of Nutrition. 140(4): p. 745-751, 2010.

Levine, James A., Norman L. Eberhardt, and Michael D. Jensen. ‚Role of nonexercise activity thermogenesis in resistance to fat gain in humans.‘ Science.  283(5399): p. 212-214, 1999.

Ogasawara, Riki, et al. ‚Effects of periodic and continued resistance training on muscle CSA and strength in previously untrained men.‘ Clinical physiology and functional imaging. 31(5): p. 399-404, 2011.

Loucks, Anne B., and Mark Verdun. ‚Slow restoration of LH pulsatility by refeeding in energetically disrupted women.‘ American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 275(4): R1218-R1226, 1998.

Trexler, Eric T., Abbie E. Smith-Ryan, and Layne E. Norton. ‚Metabolic adaptation to weight loss: implications for the athlete.‘ Journal of the International Society of Sports Nutrition. 11(1): p. 7, 2014.

Susan K. Raatz, Carolyn J. Torkelson, J. Bruce Redmon, Kristell P. Reck, Chris- tine A. Kwong, Joyce E. Swanson, Chengcheng Liu, William Thomas, and John P. Bantle. Reduced glycemic index and glycemic load diets do not increase the effects of energy restriction on weight loss and insulin sensitivity in obese men and women. The Journal of Nutrition. 135(10): p. 2387-2391, 2005.

Sho, Hiroko. ‚History and characteristics of Okinawan longevity food.‘ Asia Pacific journal of clinical nutrition. 10(2): p. 159-164, 2001.

Hall, K.D. and C.C. Chow, Why is the 3500 kcal per pound weight loss rule wrong? Int J Obes (2005). 37(12): p. 10. 1038/ijo.2013.112, 2013.

Carpentier, A.C., Acute Adaptation of Energy Expenditure Predicts Diet- Induced Weight Loss: Revisiting the Thrifty Phenotype. Diabetes. 64(8): p. 2714–2716, 2015.

Beaulieu, K., et al., Homeostatic and non-homeostatic appetite control along the spectrum of physical activity levels: An updated perspective. Physiol Behav. 1(192): p. 23-29, 2018.

Kondo, M., et al., Upper limit of fat-free mass in humans: A study on Japanese Sumo wrestlers. Am J Hum Biol. 6(5): p. 613–8, 1994.

Ainsworth, B.E., et al., Compendium of physical activities: classification of energy costs of human physical activities. Med Sci Sports Exerc. 25(1): p. 71–80, 1993.

Hawley, J.A., Molecular responses to strength and endurance training: are they incompatible? Appl Physiol Nutr Metab. 34(3): p. 355–61, 2009.

Gergley, J.C., Comparison of two lower-body modes of endurance training on lower- body strength development while concurrently training. JJ Strength Cond Res. 23(3): p. 979–87, 2009.

Burgomaster, K.A., et al., Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. Journal of Physiology. 586(1): p. 151–60, 2008.

Balabinis, C.P., et al., Early phase changes by concurrent endurance and strength training. J Strength Cond Res. 17(2): p. 393–401, 2003.

Borsheim, E. and R. Bahr, Effect of exercise intensity, duration and mode on post-exercise oxygen consumption. Sports Med. 33(14): p. 1037-60, 2003.

Lysholm, J. and J. Wiklander, Injuries in runners. Am J Sports Med. 15(2): p. 168–171, 1987.

Williams, M.H., Nutrition for health, fitness, and sport. McGraw-Hill Science Engineering, 2005.

Maltais, M.L., et al., Effect of Resistance Training and Various Sources of Protein Supplementation on Body Fat Mass and Metabolic Profile in Sarcopenic Overweight Elderly Men: A Pilot Study. Int J Sport Nutr Exerc Metab, 2015.

Mountjoy, M., et al., International Olympic Committee (IOC) Consensus Statement on Relative Energy Deficiency in Sport (RED-S): 2018 Update. Int J Sport Nutr Exerc Metab. 28(4): p. 316–331, 2018.

Loucks, A.B., Callister R., Induction and prevention of low-T3 syndrome in exercising women. Am J Physiol. 264(5 Pt 2): R924–30, 1993.

Hulmi, J.J., et al., The effects of intensive weight reduction on body composition and serum hormones in female fitness competitors. Frontiers in Physiology. 10(7): p. 689, 2017.

Halliday, T.M., J.P. Loenneke, and B.M. Davy, Dietary Intake, Body Composition, and Menstrual Cycle Changes during Competition Preparation and Recovery in a Drug-Free Figure Competitor: A Case Study Nutrients. 8(11), 2016.

Burke, L.M., et al., Pitfalls of Conducting and Interpreting Estimates of Energy Availability in Free-Living Athletes. Int J Sport Nutr Exerc Metab. 28(4): p. 350–63, 2018.

Primär-Quellen:

ER Helms, C Zinn, DS Rowlands, and Brown SR. A systematic review of dietary protein during caloric restriction in resistance trained lean athletes: a case for higher intakes. Sport Nutr Exerc Metab. 24(2): p. 127-38, 2014.

Heymsfield, S.B., et al., Voluntary weight loss: systematic review of early phase body composition changes. Obes Rev. 12(5): e348–61, 2011.

Morton, R.W., et al., A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med. 52(6): p. 376, 2018.

Gibson, A., et al., Do ketogenic diets really suppress appetite? a systematic review and meta-analysis. Obes Rev. 16(1): p. 64–76, 2015.

Eric R. Helms, Andrea Valdez, and Andy Morgan. The muscle and strength nutrition pyramid 2. 2019.

Helms, E.R., et al., High-protein, low-fat, short-term diet results in less stress and fatigue than moderate-protein moderate-fat diet during weight loss in male weightlifters: a pilot study. Int J Sport Nutr Exerc Metab. 25(2): p. 163–70, 2015.

Lyle McDonald, http://www.bodyrecomposition.com/fat-loss/insulin-sensitivity-and-fat-loss.html/, accessed: 26.06.2017.

 

Sekundär-Quellen:

Meena Shah, Manisha Chandalia, Beverley Adams-Huet, Linda J Brinkley, Khashayar Sakhaee, Scott M Grundy, and Abhimanyu Garg. Effect of a high fiber diet compared to a moderate fiber diet on calcium and other mineral balance in subjects with type 2 diabetes mellitus. Diabetes Care, 2009.

Jose Antonio, Corey A. Peacock, Anya Ellerbroek, Brandon Fromho , and Tobin Silver. The effects of consuming a high protein diet (4.4 g/kg/d) on body composition in resistance-trained individuals. Journal of the International Society of Sports Nutrition. 11(1): p. 19, 2014.

Helms, Eric R., Alan A. Aragon, and Peter J. Fitschen. ‚Evidence-based recommendations for natural bodybuilding contest preparation: nutrition and supplementation.‘ Journal of the International Society of Sports Nutrition. 11(1): p. 20, 2014

I Jacobs, P Kaiser, and P Tesch. Muscle strength and fatigue after selective glycogen depletion in human skeletal muscle bers. European Journal of Applied Physiology and Occupational Physiology. 46(1): p. 47-53, 1981.

Craig A Horswill, RC Hickner, JR Scott, DL Costill, and D Gould. Weight loss, dietary carbohydrate modifications, and high intensity, physical performance. Medicine and Science in Sports and Exercise. 22(4): p. 470-476, 1990.

Cornier, MA, et al, Insulin sensitivity determines the effectiveness of dietary macronutrient composition on weight loss in obese women. Obesity Research. 13(4): p. 703-9, 2005

Danadian, K, et al, Insulin sensitivity in African-American children with and without family history of type 2 diabetes. Diabetes Care. 22(8): p. 1325-9, 1999.

Levine, James A., Norman L. Eberhardt, and Michael D. Jensen. ‚Role of nonexercise activity thermogenesis in resistance to fat gain in humans.‘ Science. 283(5399): p. 212-214, 1999.

Molé, Paul A. ‚Impact of energy intake and exercise on resting metabolic rate.‘ Sports Medicine. 10(2): p. 72-87, 1990.

WH Saris, A Astrup, AM Prentice, and HJ Zunft. Randomized controlled trial of changes in dietary carbohydrate/fat ratio and simple vs complex carbohydrates on body weight and blood lipids: the carmen study. the carbohydrate ratio management in european national diets. Obes Relat Metab Disord. 24(10), 2000.

JA West and AE De Looy. Weight loss in overweight subjects following low-sucrose or sucrose-containing diets. International Journal of Obesity & Related Metabolic Disorders. 25(8), 2001.

Bilsborough, S. and N. Mann, A review of issues of dietary protein intake in humans. Int J Sport Nutr Exerc Metab. 16(2): p. 129, 2006.

Lemon, P.W., Beyond the zone: Protein needs of active individuals. JJ Am Coll Nutr. 19(suppl 5): 513S–21S, 2000.

Millward, D.J., Macronutrient intakes as determinants of dietary protein and amino acid adequacy. Journal of Nutrition. 134(6): 1588S–96S, 2004.

Elia, M., R.J. Stubbs, and C.J. Henry, Differences in fat, carbohydrate, and protein metabolism between lean and obese subjects undergoing total starvation. Obes Res. 7(6): p. 597–604, 1999.

Saudek, C.D. and P. Felig, The metabolic events of starvation. Am J Med. 60(1): p. 117–26, 1976.

Hector, A.J., et al., Pronounced energy restriction with elevated protein intake results in no change in proteolysis and reductions in skeletal muscle protein synthesis that are mitigated by resistance exercise. The FASEB Journal. 32(1): p. 265–275, 2018.

Carbone, J.W., et al., Effects of short-term energy deficit on muscle protein breakdown and intramuscular proteolysis in normal-weight young adults. Appl Physiol Nutr Metab. 39(8): p. 960–8, 2014.

Pasiakos, S.M., et al., Acute energy deprivation affects skeletal muscle protein synthesis and associated intracellular signaling proteins in physically active adults. J Nutr. 140(4): p. 745–51, 2010.

Murphy, C.H., A.J. Hector, and S.M. Phillips, Considerations for protein intake in managing weight loss in athletes. Eur J Sport Sci. 15(1): p. 21–28, 2015.

Phillips, S.M. and L.J. Van Loon, Dietary protein for athletes: from requirements to optimum adaptation. J Sports Sci. 29 (Suppl1): S29–38, 2011.

Jager, R., et al., International Society of Sports Nutrition Position Stand: protein and exercise. J Int Soc Sports Nutr. 14: p. 20, 2017.

Hector, A. and S.M. Phillips, Protein Recommendations for Weight Loss in Elite Athletes: A Focus on Body Composition and Performance. Int J Sport Nutr Exerc Metab. 28(2): p. 170–7, 2018.

Walberg, J.L., et al., Macronutrient content of a hypoenergy diet affects nitrogen retention and muscle function in weight lifters. Int J Sports Med. 9(4): p. 261–6, 1988.

Mettler, S., N. Mitchell, and K.D. Tipton, Increased protein intake reduces lean body mass loss during weight loss in athletes. Med Sci Sports Exerc. 42(2): p. 326–37, 2010.

Longland, T.M., et al., Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: a randomized trial. Am J Clin Nutr. 103(3): p. 738–46, 2016.

Pasiakos, S.M., et al., Effects of high-protein diets on fat-free mass and muscle protein synthesis following weight loss: a randomized controlled trial. FASEB Journal. 27(9): p. 3837–47, 2013.

Dudgeon, W.D., Kelley, E.P., Scheett, T.P., Effect of Whey Protein in Conjunction with a Caloric-Restricted Diet and Resistance Training. J Strength Cond Res. 31(5): p. 1353–61, 2017.

Tipton, K.D. and R.R. Wolfe, Protein and amino acids for athletes. Journal of Sports Sciences. 22(1): p. 65–79, 2004.

Antonio, J., et al., A high protein diet (3.4 g/kg/d) combined with a heavy resistance training program improves body composition in healthy trained men and women–a follow-up investigation. J Int Soc Sports Nutr. 12: p. 39, 2015.

Jacobs, I., P. Kaiser, and P. Tesch, Muscle strength and fatigue after selective glycogen depletion in human skeletal muscle fibers. European Journal of Applied Physiology and Occupational Physiology. 46(1): p. 47–53, 1981.

Leveritt, M. and P.J. Abernethy, Effects of Carbohydrate Restriction on Strength Performance. J Strength Cond Res13(1): p. 52–7, 1999.

Willoughby, D.S., J.R. Stout, and C.D. Wilborn, Effects of resistance training and protein plus amino acid supplementation on muscle anabolism, mass, and strength. Amino Acids. 32(4): p. 467–77, 2007.

Candow, D.G., et al., Effect of whey and soy protein supplementation combined with resistance training in young adults. Int J Sport Nutr Exerc Metab. 16(3): p. 233–44, 2006.

Cribb, P.J., et al., Effects of whey isolate, creatine, and resistance training on muscle hypertrophy. Med Sci Sports Exerc. 39(2): p. 298–307, 2007.

Hoffman, J.R., et al., Effect of a proprietary protein supplement on recovery indices following resistance exercise in strength/power athletes. Amino Acids. 38(3): p. 771–8, 2010.

Hoffman, J.R., et al., Effect of protein-supplement timing on strength, power, and body-composition changes in resistance-trained men. Int J Sport Nutr Exerc Metab. 19(2): p. 172–85, 2009.

Hoffman, J.R., et al., Effect of Protein Intake on Strength, Body Composition and Endocrine Changes in Strength/Power Athletes. J Int Soc Sports Nutr. 3(2): p. 12–18, 2006.

Paolisso, G., et al., Advancing age and insulin resistance: new facts about an ancient history. Eur J Clin Invest. 29(9): p. 758–69, 1999.

Kumar, V., et al., Age-related differences in the dose–response relationship of muscle protein synthesis to resistance exercise in young and old men. The Journal of Physiology. 587(1): p. 211–217, 2009.

Manini, T.M., Energy Expenditure and Aging. Ageing Research Reviews. 9(1): p. 1, 2010.

Feinman, R.D., et al., Dietary carbohydrate restriction as the first approach in diabetes management: Critical review and evidence base. Nutrition. 31(1): p. 1–13, 2015.

Hall, Kevin D., et al., Calorie for Calorie, Dietary Fat Restriction Results in More Body Fat Loss than Carbohydrate Restriction in People with Obesity. Cell Metabolism. 22(3): p. 427–436, 2015.

Chatterton, S., Zinn, C., Storey, A.G., Helms, E.R., The effect of an 8-week LCHF diet in sub-elite Olympic weightlifters and powerlifters on strength and power performance: A pilot case-study. Journal of Australian Strength and Conditioning. 25(2), 2017.

Escobar, K.A., Morales, J., Vandusseldorp, T.A., The Effect of a Moderately Low and High Carbohydrate Intake on Crossfit Performance. Int J Exerc Sci. 9(4): p. 460, 2016.

Hall, K.D., Guo, J., Obesity energetics: body weight regulation and the effects of diet composition. Gastroenterology. 152(7): p. 1718–27, 2017.

Cholewa, J.M., Newmire, D.E., Zanchi, N.E., Carbohydrate Restriction: Friend or Foe of Resistance-Based Exercise Performance? Nutrition. [Epub ahead of print], 2018.

Johnstone, A.M., et al., Effects of a high-protein ketogenic diet on hunger, appetite, and weight loss in obese men feeding ad libitum. Am J Clin Nutr. 87(1): p. 44–55, 2008.

Green, D.A., et al., A Low-Carbohydrate Ketogenic Diet Reduces Body Weight Without Compromising Performance in Powerlifting and Olympic Weightlifting Athletes. J Strength Cond Res. [Epub ahead of print], 2018.

Sawyer, J.C., et al., Effects of a short-term carbohydrate-restricted diet on strength and power performance. J Strength Cond Res. 27(8): p. 2255–62, 2013.

Paoli, A., et al., Ketogenic diet does not affect strength performance in elite artistic gymnasts. J Int Soc Sports Nutr. 9(1): p. 34, 2012.

Chappell, A.J., Simper, T., Barker, M.E., Nutritional strategies of high level natural bodybuilders during competition preparation. J Int Soc Sports Nutr. 15(1): p. 4, 2018.

Pittas AG, Das SK, Hajduk CL, Golden J, Saltzman E, Stark PC, et al. low-glycemic load diet facilitates greater weight loss in overweight adults with high insulin secretion but not in overweight adults with low insulin secretion in the CALERIE Trial. Diabetes Care. 28(12): p. 2939–41, 2005.

Ebbeling, C.B., et al., Effects of a low-glycemic load vs low-fat diet in obese young adults: a randomized trial. JAMA. 297(19): p. 2092-102, 2007.

Le, T., et al., Effects of Diet Composition and Insulin Resistance Status on Plasma Lipid Levels in a Weight Loss Intervention in Women. J Am Heart Assoc. 5(1), 2016.

Gardner, C.D., et al., Weight loss on low-fat vs. low-carbohydrate diets by insulin resistance status among overweight adults and adults with obesity: A randomized pilot trial. Obesity. 24(1): p. 79–86, 2016.

Gardner, C.D., et al., Effect of low-fat vs low-carbohydrate diet on 12-month weight loss in overweight adults and the association with genotype pattern or insulin secretion: The DIETFITS randomized clinical trial. JAMA. 319(7): p. 667–79, 2018.

Arslanian, S.A., et al., Family history of type 2 diabetes is associated with decreased insulin sensitivity and an impaired balance between insulin sensitivity and insulin secretion in white youth. Diabetes Care. 28(1): p. 115–9, 2005.

Bermon, S., et al., Serum Androgen Levels in Elite Female Athletes. The Journal of Clinical Endocrinology and Metabolism. 99(11): p. 4328–4335, 2014.

Mavropoulos, J.C., et al., The effects of a low-carbohydrate, ketogenic diet on the polycystic ovary syndrome: A pilot study. Nutrition and Metabolism. 2: p. 35–35, 2005.

Galletly, C., et al., Psychological benefits of a high-protein, low-carbohydrate diet in obese women with polycystic ovary syndrome–a pilot study. Appetite. 49(3): p. 590–3, 2007.

Sorensen, L.B., et al., Effects of increased dietary protein-to-carbohydrate ratios in women with polycystic ovary syndrome. Am J Clin Nutr. 95(1): p. 39–48, 2012.

Kristensen, M. and M.G. Jensen, Dietary fibres in the regulation of appetite and food intake. Importance of viscosity. Appetite. 56(1): p. 65–70, 2011.

Shah, M., et al., Effect of a High-Fiber Diet Compared With a Moderate- Fiber Diet on Calcium and Other Mineral Balances in Subjects With Type 2 Diabetes. Diabetes Care. 32(6): p. 990–995 , 2009.

Turner, N.D. and J.R. Lupton, Dietary Fiber. Advances in Nutrition: An International Review Journal. 2(2): p. 151–152, 2011.

Paddon-Jones, Douglas, et al. ‚Protein, weight management, and satiety.‘ The American journal of clinical nutrition. 87(5): 1558S-1561S, 2008.

Anderson, G. Harvey, and Dianne Woodend. ‚Consumption of sugars and the regulation of short-term satiety and food intake.‘ The American journal of clinical nutrition. 78(4): p. 843S-849S, 2003.

Richard S Surwit, Mark N Feinglos, Cynthia C McCaskill, Sara L Clay, Michael A Babyak, Brenda S Brownlow, Claudia S Plaisted, and Pao-Hwa Lin. Metabolic and behavioral effects of a high-sucrose diet during weight loss. The American journal of clinical nutrition. 65(4): p. 908-915, 1997.

John A Hawley. Molecular responses to strength and endurance training: Are they incompatible? This paper article is one of a selection of papers published in this special issue, entitled 14th international biochemistry of exercise conference-muscles as molecular and metabolic 43 machines, and has undergone the journal’s usual peer review process. Applied physiology, nutrition, and metabolism. 34(3): p. 355 361, 2009.

Jacob M Wilson, Pedro J Marin, Matthew R Rhea, Stephanie MC Wilson, Je- remy P Loenneke, and Jody C Anderson. Concurrent training: a meta- analysis examining interference of aerobic and resistance exercises. The Journal of Strength & Conditioning Research. 26(8): p. 2293-2307, 2012.

Bergström, Jonas, et al. ‚Diet, muscle glycogen and physical performance.‘ Acta Physiologica. 71(2‐3): p. 140-150, 1967.

Bloom eld HE, Koeller E, Greer N, MacDonald R, Kane R, and Wilt TJ. Effects on health outcomes of a mediterranean diet with no restriction on fat intake: A systematic review and meta-analysis. Annals of Internal Medicine. 165(7): p. 491 500, 2016.

Chowdhury R, Warnakula S, Kunutsor S, and et al. Association of dietary, circulating, and supplement fatty acids with coronary risk: A systematic review and meta-analysis. Annals of Internal Medicine. 160(6): p. 398-406, 2014.

Patty W Siri-Tarino, Qi Sun, Frank B Hu, and Ronald M Krauss. Meta- analysis of prospective cohort studies evaluating the association of saturated fat with car- diovascular disease. The American Journal of Clinical Nutrition. 91(3): p. 535-546, 2010.

Primär-Quellen:

Levine, James A., Norman L. Eberhardt, and Michael D. Jensen. ‚Role of nonexercise activity thermogenesis in resistance to fat gain in humans.‘ Science 283(5399): p. 212-214, 1999.

 

Sekundär-Quellen:

Eric R. Helms, Andrea Valdez, and Andy Morgan. The muscle and strength nutrition pyramid 2. 2019.

Helms, Eric R., Alan A. Aragon, and Peter J. Fitschen. ‚Evidence-based recommendations for natural bodybuilding contest preparation: nutrition and supplementation.‘ Journal of the International Society of Sports Nutrition. 11(1): p. 20, 2014.

Hall, Kevin D. ‚What is the required energy deficit per unit weight loss?.‘ International Journal of Obesity. 32(3): p. 573-576, 2008.

Romano, K.A., et al., Helpful or harmful? The comparative value of self-weighing and calorie counting versus intuitive eating on the eating disorder symptomology of college students. Eat Weight Disord. [Epub ahead of print], 2018.

Stewart, T.M., D.A. Williamson, and M.A. White, Rigid vs. flexible dieting: association with eating disorder symptoms in nonobese women. Appetite. 38(1): p. 39–44, 2002.

Palascha, A., E. van Kleef, and H.C. van Trijp, How does thinking in Black and White terms relate to eating behavior and weight regain? J Health Psychol. 20(5): p. 638–48, 2015.

Tylka, T.L., Calogero, R.M., Daníelsdóttir, S., Is intuitive eating the same as flexible dietary control? Their links to each other and well-being could provide an answer. Appetite. 1(95): p. 166–75, 2015.

Ogden, J., Whyman, C., The effect of repeated weighing on psychological state. Eur Eat Disord Rev. 5(2): p. 121–30, 1997.

Primär-Quellen:

Justin A Kraft, James M Green, Phillip A Bishop, Mark T Richardson, Yasmin H Neggers, and James D Leeper. The influence of hydration on anaerobic performance: a review. Research quarterly for exercise and sport. 83(2): p. 282-292, 2012.

LC Jones, MA Cleary, RM Lopez, RE Zuri, and R Lopez. Active dehydration impairs upper and lower body anaerobic muscular power. Strength Cond Res. 22(2): p. 455-63, 2008.

 

Sekundär-Quellen:

D Häussinger, W Gerok, E Roth, and F Lang. Cellular hydration state: an important determinant of protein catabolism in health and disease. The Lancet. 341(8856): p. 1330-1332, 1993.

Justin A. Kraft, James M. Green, Phillip A. Bishop, Mark T. Richardson, Yasmin H. Neggers, and James D. Leeper. Impact of dehydration on a full body resistance exercise protocol. European Journal of Applied Physiology. 109(2): p. 259 267, 2010.

An, R., and J. McCaffrey. ‚Plain water consumption in relation to energy intake and diet quality among US adults, 2005–2012.‘ Journal of Human Nutrition and Dietetics 29(5): p. 624-632, 2016.

McDonald, Roger B., et al. ‚Relationship between cold-induced thermoregulation and spontaneous rapid body weight loss of aging F344 rats.‘ American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 271(5): R1115-R1122, 1996.

Killer, S.C., A.K. Blannin, and A.E. Jeukendrup, No evidence of dehydration with moderate daily coffee intake: a counterbalanced cross-over study in a free-living population. PLoS One. 9(1): e84154, 2014.

Armstrong, L.E., et al., Urinary indices of hydration status. Int J Sport Nutr. 4(3): p. 265–79, 1994.

Kraft, J.A., et al., The influence of hydration on anaerobic performance: a review. Res Q Exerc Sport. 83(2): p. 282–92, 2012.

Primär-Quellen:

Wang, X., et al., Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. The BMJ. 349: p. g4490, 2014.

Aune, D., et al., Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality — a systematic review and dose-response meta-analysis of prospective studies. International Journal of Epidemiology. 46(3): p.1029–56, 2017.

 

Sekundär-Quellen:

Henry C Lukaski. Vitamin and mineral status: e ects on physical performance. Nutrition. 20(7): p. 632 644, 2004.

KM Fail- field and RH Fletcher. Vitamins for chronic disease prevention in adults. JAMA. 287: p. 3116 3126, 2002.

Michael Hambidge. Human zinc de ciency. The Journal of nutrition. 130(5): p. 1344S 1349S, 2000.

Dana E King, Arch G Mainous III, Mark E Geesey, and Robert F Woolson. Dietary magnesium and c-reactive protein levels. Journal of the American College of Nutrition. 24(3): p. 166 171, 2005.

Michael F Holick and Tai C Chen. Vitamin D deficiency: a worldwide problem with health consequences. The American journal of clinical nutrition. 87(4): p. 1080S 1086S, 2008.

Deutsche Gesellschaft für Ernährung e. V. DGE-Ernährungskreis. https://www. dge.de/ernaehrungspraxis/vollwertige- ernaehrung/ernaehrungskreis/. [Online; accessed 30-10-2016].

https://examine.com/nutrition/awful-nutrition-myths/]examine.com. 07.06.2017.

Calton, J., Prevalence of micronutrient deficiency in popular diet plans. J Int Soc Sports Nutr. 7(1): p. 24, 2010.

Sandoval, W.M. and V.H. Heyward, Food selection patterns of bodybuilders. Int J Sport Nutr. 1(1): p. 61–8, 1991.

Sandoval, W.M., V.H. Heyward, and T.M. Lyons, Comparison of body composition, exercise and nutritional profiles of female and male bodybuilders at competition. J Sports Med Phys Fitness. 29(1): p. 63–70, 1989.

Walberg-Rankin, J., C.E. Edmonds, and F.C. Gwazdauskas, Diet and weight changes of female bodybuilders before and after competition. Int J Sport Nutr. 3(1): p. 87–102, 1993.

Bazzarre, T.L., S.M. Kleiner, and M.D. Litchford, Nutrient intake, body fat, and lipid profiles of competitive male and female bodybuilders. J Am Coll Nutr. 9(2): p. 136–42, 1990.

Kleiner, S.M., T.L. Bazzarre, and B.E. Ainsworth, Nutritional status of nationally ranked elite bodybuilders. Int J Sport Nutr. 4(1): p. 54–69, 1994.

Helms, E.R., A.A. Aragon, and P.J. Fitschen, Evidence-based recommendations for natural bodybuilding contest preparation: nutrition and supplementation. J Int Soc Sports Nutr. 11(1): p. 20, 2014.

Maxwell, C. and S.L. Volpe, Effect of zinc supplementation on thyroid hormone function. A case study of two college females. Ann Nutr Metab. 51(2): p. 188–94, 2007.

Mielgo-Ayuso, J., et al., Iron supplementation prevents a decline in iron stores and enhances strength performance in elite female volleyball players during the competitive season. Appl Physiol Nutr Metab. 40(6): p. 615–6222015.

Godar, D.E., R.J. Landry, and A.D. Lucas, Increased UVA exposures and decreased cutaneous Vitamin D(3) levels may be responsible for the increasing incidence of melanoma. Med Hypotheses. 72(4): p. 434–43, 2009.

Ismaeel, A., Weems, S., Willoughby, D.S., A Comparison of the Nutrient Intakes of Macronutrient-Based Dieting and Strict Dieting Bodybuilders. Int J Sport Nutr Exerc Metab. 28(5): p. 502–8, 2018.

Slavin, J.L. and B. Lloyd, Health Benefits of Fruits and Vegetables. Advances in Nutrition: An International Review Journal. 3(4): p. 506–516, 2012.

Primär-Quellen:

Rebecca M Lopez, Douglas J Casa, Brendon P McDermott, Matthew S Ganio, Lawrence E Armstrong, and Carl M Maresh. Does creatine supplementation hinder exercise heat tolerance or hydration status? a systematic review with meta-analyses. Journal of athletic training. 44(2): p. 215–223, 2009.

J David Branch. Effect of creatine supplementation on body composition and performance: a meta-analysis. International journal of sport nutrition and exercise metabolism. 13: p. 198–226, 2003.

Brad Jon Schoenfeld, Alan Albert Aragon, and James W. Krieger. The effect of protein timing on muscle strength and hypertrophy: a meta-analysis. Journal of the International Society of Sports Nutrition. 10(1): p. 53, 2013.

Ruth M Hobson, Bryan Saunders, Graham Ball, RC Harris, and Craig Sale. Effects of β-alanine supplementation on exercise performance: a meta-analysis. Amino acids. 43(1): p. 25– 37, 2012.

Mocking, R.J., et al., Meta-analysis and meta-regression of omega-3 polyunsaturated fatty acid supplementation for major depressive disorder. Transl Psychiatry. 6: e756, 2016.

Maki, K.C., et al., Use of supplemental long-chain omega-3 fatty acids and risk for cardiac death: An updated meta-analysis and review of research gaps. J Clin Lipidol, 2017.

Miller, P.E., M. Van Elswyk, and D.D. Alexander, Long-Chain Omega-3 Fatty Acids Eicosapentaenoic Acid and Docosahexaenoic Acid and Blood Pressure: A Meta-Analysis of Randomized Controlled Trials. Am J Hypertens. 27(7): p. 885–96, 2014.

Du, S., et al., Does Fish Oil Have an Anti-Obesity Effect in Overweight/ Obese Adults? A Meta-Analysis of Randomized Controlled Trials. PLoS ONE. 10(11): e0142652, 2015.

Farrokhyar, F., et al., Prevalence of vitamin D inadequacy in athletes: a systematic review and meta-analysis. Sports Med. 45(3): p. 365–78 , 2015.

Tomlinson, P.B., et al., Effects of vitamin D supplementation on upper and lower body muscle strength levels in healthy individuals. A systematic review with meta-analysis. J Sci Med Sport. 18(5): p. 575–80, 2015.

Farrokhyar, F., et al., Effects of Vitamin D Supplementation on Serum 25-Hydroxyvitamin D Concentrations and Physical Performance in Athletes: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Sports Med. 47(11): p. 2323–39, 2017.

Saunders, B., et al., β-alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis. Br J Sports Med. 51(8): p. 658–69, 2017.

Ahmadi, A.R., Rayyani, E., Bahreini, M., Mansoori, A., The effect of glutamine supplementation on athletic performance, body composition, and immune function: A systematic review and a meta-analysis of clinical trials. Clin Nutr.  [Epub ahead of print]. 2018.

McRae, M.P., Therapeutic benefits of glutamine: An umbrella review of meta-analyses. Biom Rep. 6(5): p. 576–84, 2017.

Rahimi, M.H., Shab-Bidar, S., Mollahosseini, M., Djafarian, K., Branched-chain amino acid supplementation and exercise-induced muscle damage in exercise recovery: A meta-analysis of randomized clinical trials. Nutrition. 42: p. 30–6, 2017.

Nissen, S.L. and R.L. Sharp, Effect of dietary supplements on lean mass and strength gains with resistance exercise: a meta-analysis. J Appl Physiol 1985. 94(2): p. 651–9, 2003.

Rowlands, D.S. and J.S. Thomson, Effects of beta-hydroxy-beta-methylbutyrate supplementation during resistance training on strength, body composition, and muscle damage in trained and untrained young men: a meta-analysis. J Strength Cond Res. 23(3): p. 836–46, 2009.

Sanchez-Martinez, J., et al., Effects of beta-hydroxy-beta-methylbutyrate supplementation on strength and body composition in trained and competitive athletes: A meta-analysis of randomized controlled trials. J Sci Med Sport. 21(7): p. 727–35, 2018.

Stefan M Pasiakos, Harris R Lieberman, and Tom M McLellan. Effects of protein supplements on muscle damage, soreness and recovery of muscle function and physical performance: A systematic review. Sports Medicine. 44(5):655–670, 2014.

Alexander, D.D., et al., A Systematic Review of Multivitamin–Multimineral Use and Cardiovascular Disease and Cancer Incidence and Total Mortality. J Am Coll Nutr. 32(5): p. 339–354, 2013.

Eric R. Helms, Andrea Valdez, and Andy Morgan. The muscle and strength nutrition pyramid 2. 2019.

 

Sekundär-Quellen:

Jose Antonio, Corey A Peacock, Anya Ellerbroek, Brandon Fromhoff, and Tobin Silver. The effects of consuming a high protein diet (4.4 g/kg/d) on body composition in resistancetrained individuals. Journal of the International Society of Sports Nutrition. 11(1): p. 1, 2014.

Henry C Lukaski. Vitamin and mineral status: effects on physical performance. Nutrition. 20(7): p. 632–644, 2004.

Kathleen Woolf and Melinda M Manore. B-vitamins and exercise: does exercise alter requirements? International journal of sport nutrition and exercise metabolism. 16(5): p. 453, 2006.

examine.com. [Online; accessed 04-11-2016].

S Volpe and E Bland. Vitamins, minerals and exercise. Sports Nutrition: A Practice Manual for Professionals. Chicago (IL): American Dietetic Associatio.  P. 61–3, 2006.

J Driskell and I Wolinsky. Summary: Vitamins and trace elements in sports nutrition. Sports Nutrition. Vitamins and Trace Elements. New York (NY): CRC/Taylor & Francis. P. 323–31, 2006.

Shalender Bhasin, Thomas W Storer, Nancy Berman, Carlos Callegari, Brenda Clevenger, Jeffrey Phillips, Thomas J Bunnell, Ray Tricker, Aida Shirazi, and Richard Casaburi. The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. New England Journal of Medicine. 335(1): p. 1–7, 1996.

Indrani Sinha-Hikim, Jorge Artaza, Linda Woodhouse, Nestor Gonzalez-Cadavid, Atam B Singh, Martin I Lee, Thomas W Storer, Richard Casaburi, Ruoquing Shen, and Shalender Bhasin. Testosterone-induced increase in muscle size in healthy young men is associated with muscle fiber hypertrophy. American Journal of Physiology-Endocrinology and Metabolism. 283(1): E154–E164, 2002.

Herbert A Haupt. Anabolic steroids and growth hormone. The American journal of sports medicine. 21(3): p. 468–474, 1992.

Andreas Bender, Walter Samtleben, Matthias Elstner, and Thomas Klopstock. Long-term creatine supplementation is safe in aged patients with parkinson disease. Nutrition research. 28(3): p. 172–178, 2008.

Andrew Shao and John N Hathcock. Risk assessment for creatine monohydrate. Regulatory Toxicology and Pharmacology. 45(3): p. 242–251, 2006.

GJ Groeneveld, C Beijer, JH Veldink, S Kalmijn, JHJ Wokke, and LH Van den Berg. Few adverse effects of long-term creatine supplementation in a placebo-controlled trial. International journal of sports medicine. 26(04): p. 307–313, 2005.

Michael Greenwood, Richard B Kreider, Charlie Melton, Christopher Rasmussen, Stacy Lancaster, Edward Cantler, Purvis Milnor, and Anthony Almada. Creatine supplementation during college football training does not increase the incidence of cramping or injury. Molecular and cellular biochemistry. 244(1-2): p. 83–88, 2003.

Daniel G Syrotuik and Gordon J Bell. Acute creatine monohydrate supplementation: Adescriptive physiological profile of responders vs. nonresponders. The Journal of Strength & Conditioning Research. 18(3): p. 610–617, 2004.

Robert Cooper, Fernando Naclerio, Judith Allgrove, and Alfonso Jimenez. Creatine supplementation with specific view to exercise/sports performance: an update. Journal of the International Society of Sports Nutrition, 9(1): p. 1, 2012.

Eric S Rawson and Jeff S Volek. Effects of creatine supplementation and resistance training on muscle strength and weightlifting performance. The Journal of Strength & Conditioning Research. 17(4): p. 822–831, 2003.

Thomas W Buford, Richard B Kreider, Jeffrey R Stout, Mike Greenwood, Bill Campbell, Marie Spano, Tim Ziegenfuss, Hector Lopez, Jamie Landis, and Jose Antonio. International society of sports nutrition position stand: creatine supplementation and exercise. Journal of the International Society of Sports Nutrition. 4(1): p. 1, 2007.

Jay Hoffman, NA Ratamess, Jie Kang, Gerald Mangine, Avery Faigenbaum, and Jeffrey Stout. Effect of creatine and ß-alanine supplementation on performance and endocrine responses in strength/power athletes. Int J Sport Nutr Exerc Metab, 16: p. 430–446, 2006.

Philip D Chilibeck, David Stride, Jonathan P Farthing, and Daren G Burke. Effect of creatine ingestion after exercise on muscle thickness in males and females. Medicine and science in sports and exercise. 36: p. 1781–1788, 2004.

Liam P Kilduff, Yannis P Pitsiladis, Louise Tasker, Jeff Attwood, Paul Hyslop, Andrew Dailly, Ian Dickson, and Stan Grant. Effects of creatine on body composition and strength gains after 4 weeks of resistance training in previously nonresistance-trained humans. International journal of sport nutrition and exercise metabolism. 13: p. 504–520, 2003.

Alan Albert Aragon and Brad Jon Schoenfeld. Nutrient timing revisited: is there a postexercise anabolic window? Journal of the international society of sports nutrition. 10(1): p. 1, 2013.

KM Fail-field and RH Fletcher. Vitamins for chronic disease prevention in adults. JAMA. 287: p. 3116–3126, 2002.

Michael F Holick and Tai C Chen. Vitamin D deficiency: a worldwide problem with health consequences. The American journal of clinical nutrition. 87(4): p. 1080S–1086S, 2008.

Dana E King, Arch G Mainous III, Mark E Geesey, and Robert F Woolson. Dietary magnesium and c-reactive protein levels. Journal of the American College of Nutrition. 24(3): p. 166– 171, 2005.

Michael Hambidge. Human zinc deficiency. The Journal of nutrition, 130(5): p. 1344S–1349S, 2000.

Mark Glaister, Glyn Howatson, Corinne Abraham, Richard Lockey, Jon Goodwin, Paul Foley, and Gillian McInnes. Caffeine supplementation and multiple sprint running performance. Medicine+ Science in Sports+ Exercise. 40(10): p. 1835, 2008.

C Martyn Beaven, Will G Hopkins, Kier T Hansen, Matthew R Wood, John B Cronin, Timothy E Lowe, et al. Dose effect of caffeine on testosterone and cortisol responses to resistance exercise. International journal of sport nutrition and exercise metabolism. 18(2): p. 131, 2008.

Christian Cook, C Martyn Beaven, Liam P Kilduff, and Scott Drawer. Acute caffeine ingestion’s increase of voluntarily chosen resistance-training load after limited sleep. International journal of sport nutrition and exercise metabolism. [Randomized Controlled Trial]. 22(3): p. 157– 64, 2012.

Juan Del Coso, Juan Jose Salinero, Cristina Gonzalez-Millan, Javier Abian-Vicen, and Benito Perez-Gonzalez. Dose response effects of a caffeine-containing energy drink on muscle performance: a repeated measures design. Journal of the International Society of Sports Nutrition. 9(1): p. 1, 2012.

Silvia Lorente-Cebrian, Andre GV Costa, Santiago Navas-Carretero, Marıa Zabala, J Alfredo Martınez, and Marıa J Moreno-Aliaga. Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: a review of the evidence. Journal of physiology and biochemistry. 69(3): p. 633–651, 2013.

Kelly B Jouris, Jennifer L McDaniel, and Edward P Weiss. The effect of omega-3 fatty acid supplementation on the inflammatory response to eccentric strength exercise. Journal of Sports Science and Medicine. 10(3): p. 432–438, 2011.

Bakhtiar Tartibian, Behzad Hajizadeh Maleki, and Asghar Abbasi. The effects of ingestion of omega-3 fatty acids on perceived pain and external symptoms of delayed onset muscle soreness in untrained men. Clinical Journal of Sport Medicine. 19(2): p. 115–119, 2009.

William S Harris. International recommendations for consumption of long-chain omega-3 fatty acids. Journal of cardiovascular medicine. 8: S50–S52, 2007.

EFS Authority. Scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsatureated fatty acids, trans fatty acids, and cholesterol. EFSA Journal. 8: p. 1461–1566, 2010.

Ben D Kern and Tracey L Robinson. Effects of β-alanine supplementation on performance and body composition in collegiate wrestlers and football players. The Journal of Strength & Conditioning Research. 25(7): p. 1804–1815, 2011.

Abbie E Smith, Ashley A Walter, Jennifer L Graef, Kristina L Kendall, Jordan R Moon, Christopher M Lockwood, David H Fukuda, Travis W Beck, Joel T Cramer, and Jeffrey R Stout. Effects of β-alanine supplementation and high-intensity interval training on endurance performance and body composition in men; a double-blind trial. Journal of the International Society of Sports Nutrition. 6(1): p. 1, 2009.

Ashley A Walter, Abbie E Smith, Kristina L Kendall, Jeffrey R Stout, and Joel T Cramer. Six weeks of high-intensity interval training with and without β-alanine supplementation for improving cardiovascular fitness in women. The Journal of Strength & Conditioning Research. 24(5): p. 1199–1207, 2010.

Benjamin Wax, Andreas N Kavazis, and William Luckett. Effects of supplemental citrullinemalate ingestion on blood lactate, cardiovascular dynamics, and resistance exercise performance in trained males. Journal of dietary supplements, 13(3): p. 269–282, 2016.

Benjamin Wax, Andreas N Kavazis, Kevin Weldon, and Joseph Sperlak. Effects of supplemental citrulline malate ingestion during repeated bouts of lower-body exercise in advanced weightlifters. The Journal of Strength & Conditioning Research. 29(3): p. 786–792, 2015.

Joaquın Perez-Guisado and Philip M Jakeman. Citrulline malate enhances athletic anaerobic performance and relieves muscle soreness. The Journal of Strength & Conditioning Research. 24(5): p. 1215–1222, 2010.

D Bendahan, JP Mattei, B Ghattas, S Confort-Gouny, ME Le Guern, and PJ Cozzone. Citrulline/malate promotes aerobic energy production in human exercising muscle. British journal of sports medicine. 36(4): p. 282–289, 2002.

AB Gualano, T Bozza, De Campos P Lopes, Hamilton Roschel, Costa A Dos Santos, Marquezi M Luiz, F Benatti, and Lancha Junior A Herbert. Branched-chain amino acids supplementation enhances exercise capacity and lipid oxidation during endurance exercise after muscle glycogen depletion. The Journal of sports medicine and physical fitness. 51(1): p. 82–88, 2011.

Beau Kjerulf Greer, Jim P White, Eric M Arguello, and Emily M Haymes. Branched-chain amino acid supplementation lowers perceived exertion but does not affect performance in untrained males. The Journal of Strength & Conditioning Research. 25(2): p. 539–544, 2011.

Jay R Hoffman, Joshua Cooper, Michael Wendell, Joohee Im, and Jie Kang. Effects of [beta]-hydroxy [beta]-methylbutyrate on power performance and indices of muscle damage and stress during high-intensity training. The Journal of Strength & Conditioning Research. 18(4): p. 747–752, 2004.

Phillip Gallagher, John Carrithers, Michael Godhard, and Kimberley Schulze. beta-hydroxybeta-methylbutyrate ingestion, part i: effects on strength and fat free mass. Medicine and Science in Sports and Exercise, 32(1): p. 2209–2115, 2000.

Darryn S Willoughby and Brian Leutholtz. d-aspartic acid supplementation combined with 28 days of heavy resistance training has no effect on body composition, muscle strength, and serum hormones associated with the hypothalamo-pituitary-gonadal axis in resistancetrained men. Nutrition research, 33(10): p. 803–810, 2013.

Geoffrey W Melville, Jason C Siegler, and Paul WM Marshall. Three and six grams supplementation of d-aspartic acid in resistance trained men. Journal of the International Society of Sports Nutrition. 12(1): p. 1, 2015.

Albert, B.B., et al., Fish oil supplements in New Zealand are highly oxidised and do not meet label content of n-3 PUFA. Sci. Rep. 5, 2015.

Kleiner, A.C., D.P. Cladis, and C.R. Santerre, A comparison of actual versus stated label amounts of EPA and DHA in commercial omega-3 dietary supplements in the United States. J Sci Food Agric. 95(6): p. 1260–7, 2015.

Haller, C.A., et al., Concentrations of ephedra alkaloids and caffeine in commercial dietary supplements. J Anal Toxicol. 28(3): p. 145–51, 2004.

Geyer, H., et al., Nutritional supplements cross contaminated and faked with doping substances. J Mass Spectrom. 43(7): p. 892–902, 2008.

Cohen, P.A., et al., Presence of banned drugs in dietary supplements following FDA recalls. JAMA. 312(16): p. 1691–1693, 2014.

Rehman, S., et al., Calcium supplements: an additional source of lead contamination. Biol Trace Elem Res. 143(1): p. 178–87, 2011.

Maughan, R.J., Contamination of dietary supplements and positive drug tests in sport. J Sports Sci. 23(9): p. 883–9, 2005.

Topo, E., et al., The role and molecular mechanism of D-aspartic acid in the release and synthesis of LH and testosterone in humans and rats. Reprod Biol Endocrinol. 7: p. 120 , 2009.

Willoughby, D.S. and B. Leutholtz, D-aspartic acid supplementation combined with 28 days of heavy resistance training has no effect on body composition, muscle strength, and serum hormones associated with the hypothalamo-pituitary-gonadal axis in resistance-trained men. Nutr Res. 33(10): p. 803–10, 2013.

Melville, G.W., J.C. Siegler, and P.W. Marshall, Three and six grams supplementation of d-aspartic acid in resistance trained men. J Int Soc Sports Nutr. 12: p. 15, 2015.

Calton, J., Prevalence of micronutrient deficiency in popular diet plans. J Int Soc Sports Nutr. 7(1): p. 24, 2010.

Lorente-Cebrian, S., et al., Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: a review of the evidence. J Physiol Biochem. 69(3): p. 633–51, 2013.

Di Girolamo, F.G., et al., Omega-3 fatty acids and protein metabolism: enhancement of anabolic interventions for sarcopenia. Curr Opin Clin Nutr Metab Care. 17(2): p. 145–150, 2014.

McGlory, C., et al., Fish oil supplementation suppresses resistance exercise and feeding-induced increases in anabolic signaling without affecting myofibrillar protein synthesis in young men. Physiol Rep. 4(6): e12715, 2016.

Lewis, E.J.H., et al., 21 days of mammalian omega-3 fatty acid supplementation improves aspects of neuromuscular function and performance in male athletes compared to olive oil placebo. J Int Soc Sports Nutr. 12(1): p. 28, 2015.

Lembke, P., et al., Influence of omega-3 (n3) index on performance and wellbeing in young adults after heavy eccentric exercise. J Sports Sci Med. 13(1): p. 151, 2014.

Crestani, D.M., et al., Chronic supplementation of omega-3 can improve body composition and maximal strength, but does not change the resistance to neuromuscular fatigue. Sport Sci Health. 13(2): p. 259–65, 2017.

Bendik, I., et al., Vitamin D: a critical and essential micronutrient for human health. Front Physiol. 5: p. 248, 2014.

Holick, M.F., et al., Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 96(7): p. 1911–30, 2011.

Jung, H.C., et al., Correcting Vitamin D Insufficiency Improves Some, But Not All Aspects of Physical Performance during Winter Training in Taekwondo Athletes. Int J Sport Nutr Exerc Metab: [Epub ahead of print] p. 1–25, 2018.

He, C.S., et al., The effect of 14 weeks of vitamin D3 supplementation on antimicrobial peptides and proteins in athletes. J Sports Sci. 34(1): p. 67–74, 2016.

He, C.S., et al., Influence of vitamin D status on respiratory infection incidence and immune function during 4 months of winter training in endurance sport athletes. Exerc Immunol Rev. 19: p. 86–101, 2013.

Wyon, M.A., et al., Acute Effects of Vitamin D3 Supplementation on Muscle Strength in Judoka Athletes: A Randomized Placebo-Controlled, Double-Blind Trial. Clin J Sport Med. 26(4): p. 279–84, 2016.

Godar, D.E., R.J. Landry, and A.D. Lucas, Increased UVA exposures and decreased cutaneous Vitamin D(3) levels may be responsible for the increasing incidence of melanoma. Med Hypotheses. 72(4): p. 434–43, 2009.

Owens, D.J., R. Allison, and G.L. Close, Vitamin D and the Athlete: Current Perspectives and New Challenges. Sports Med. 48(Suppl 1): p. 3–16, 2018.

Spillane, M., et al., The effects of creatine ethyl ester supplementation combined with heavy resistance training on body composition, muscle performance, and serum and muscle creatine levels. J Int Soc Sports Nutr. 6: p. 6, 2009.

Jagim, A.R., et al., A buffered form of creatine does not promote greater changes in muscle creatine content, body composition, or training adaptations than creatine monohydrate. J Int Soc Sports Nutr. 9(1): p. 43, 2012.

Mora, L., M.A. Sentandreu, and F. Toldra, Effect of cooking conditions on creatinine formation in cooked ham. J Agric Food Chem, 2008. 56(23): p. 11279–84.

Childs, E. and H. de Wit, Subjective, Behavioral, and physiological effects of acute caffeine in light, nondependent caffeine users. Psychopharmacology (Berl). 185(4): p. 514–23, 2006.

Panek-Shirley, L.M., et al., Caffeine Transiently Affects Food Intake at Breakfast. J Acad Nutr Diet. [Epub ahead of print], 2018.

Schubert, M.M., et al., Caffeine, coffee, and appetite control: a review. Int J Food Sci Nutr. 68(8): p. 901–12, 2017.

Gavrieli, A., et al., Effect of different amounts of coffee on dietary intake and appetite of normal-weight and overweight/obese individuals. Obesity (Silver Spring). 21(6): p. 1127–32, 2013.

Schubert, M.M., et al., Coffee for morning hunger pangs. An examination of coffee and caffeine on appetite, gastric emptying, and energy intake. Appetite. 83: p. 317-26, 2014.

Tremblay, A., et al., Caffeine reduces spontaneous energy intake in men but not in women. Nutrition Research. 8(5): p. 553–8, 1988.

Gavrieli, A., et al., Caffeinated coffee does not acutely affect energy intake, appetite, or inflammation but prevents serum cortisol concentrations from falling in healthy men. J Nutr. 141(4): p. 703–7, 2011.

Astrup, A., et al., The effect and safety of an ephedrine/caffeine compound compared to ephedrine, caffeine and placebo in obese subjects on an energy restricted diet. A double-blind trial. Int J Obes Relat Metab Disord. 16(4): p. 269–77, 1992.

Gliottoni, R.C., et al., Effect of caffeine on quadriceps muscle pain during acute cycling exercise in low versus high caffeine consumers. Int J Sport Nutr Exerc Metab. 19(2): p. 150–61, 2009.

Tarnopolsky, M. and C. Cupido, Caffeine potentiates low frequency skeletal muscle force in habitual and nonhabitual caffeine consumers. J Appl Physiol. 89(5): p. 1719–24, 2000

Bell, D.G. and T.M. McLellan, Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. J Appl Physiol. 93(4): p. 1227–34, 2002.

Beaumont, R., et al., Chronic ingestion of a low dose of caffeine induces tolerance to the performance benefits of caffeine. J Sports Sci. 35(19): p. 1920–7, 2017.

Gonçalves, L.d.S., et al., Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. J Appl Physiol. 123(1): p. 213–20, 2017.

Schoenfeld, B.J., et al., Effects of different volume-equated resistance training loading strategies on muscular adaptations in well-trained men. J Strength Cond Res. 28(10): p. 2909–18, 2014.

Schwedhelm, E., et al., Pharmacokinetic and pharmacodynamic properties of oral L-citrulline and L-arginine: impact on nitric oxide metabolism. Br J Clin Pharmacol. 65(1): p. 51–9, 2008.

Callis, A., et al., Activity of citrulline malate on acid-base balance and blood ammonia and amino acid levels. Study in the animal and in man. Arzneimittelforschun. 41(6): p. 660–3, 1991.

Wax, B., A.N. Kavazis, and W. Luckett, Effects of Supplemental Citrulline-Malate Ingestion on Blood Lactate, Cardiovascular Dynamics, and Resistance Exercise Performance in Trained Males. J Diet Suppl. 13(3): p. 269–82, 2016.

Glenn, J.M., et al., Acute citrulline malate supplementation improves upper- and lower-body submaximal weightlifting exercise performance in resistance-trained females. Eur J Nutr. 56(2): p. 775–84, 2017.

Glenn, J.M., et al., Acute citrulline-malate supplementation improves maximal strength and anaerobic power in female, masters athletes tennis players. Eur J Sport Sci. 16(8): p. 1095–103, 2016.

Gonzalez, A.M., et al., Acute effect of citrulline malate supplementation on upper-body resistance exercise performance in recreationally resistance-trained men. J Strength Cond Res. [Epub ahead of print], 2017.

Farney, T.M., et al., The Effect of Citrulline Malate Supplementation On Muscle Fatigue Among Healthy Participants. J Strength Cond Res. [Epub ahead of print], 2017.

Hwang, P., et al., Eight weeks of resistance training in conjunction with glutathione and L-Citrulline supplementation increases lean mass and has no adverse effects on blood clinical safety markers in resistance-trained males. J Int Soc Sports Nutr. 15(1): p. 30, 2018.

Chappell, A.J., et al., Citrulline malate supplementation does not improve German Volume Training performance or reduce muscle soreness in moderately trained males and females. J Int Soc Sports Nutr. 15(1): p. 42 , 2018.

da Silva, D.K., et al., Citrulline malate does not improve muscle recovery after resistance exercise in untrained young adult men. Nutrients. 9(10): p. 1132, 2017.

Helms, E.R., A.A. Aragon, and P.J. Fitschen, Evidence-based recommendations for natural bodybuilding contest preparation: nutrition and supplementation. J Int Soc Sports Nutr. 11(1): p. 20, 2014.

Stoppani, J., Scheett, T., Pena, J., Rudolph, C., Charlebois, D., Consuming a supplement containing branched-chain amino acids during a resistance-training program increases lean mass, muscle strength, and fat loss. J Int Soc Sports Nutr. 6(Suppl 1): p. 1, 2009.

Dudgeon, W.D., Kelley, E.P., Scheett, T.P., In a single-blind, matched group design: branched-chain amino acid supplementation and resistance training maintains lean body mass during a caloric restricted diet. J Int Soc Sports Nutr. 13(1): p. 1, 2016.

Dieter, B.P., Schoenfeld, B.J., Aragon, A.A., The data do not seem to support a benefit to BCAA supplementation during periods of caloric restriction. J Int Soc Sports Nutr. 13(1): p. 21, 2016.

Chang, C.K., et al., Branched-chain amino acids and arginine improve performance in two consecutive days of simulated handball games in male and female athletes: a randomized trial. PLoS One. 10(3): e0121866, 2015.

Jang, T.R., et al., Effects of carbohydrate, branched-chain amino acids, and arginine in recovery period on the subsequent performance in wrestlers. J Int Soc Sports Nutr. 8: p. 21, 2011.

Mourier, A., et al., Combined effects of caloric restriction and branched-chain amino acid supplementation on body composition and exercise performance in elite wrestlers. Int J Sports Med. 18(1): p. 47–55, 1997.

Wolfe RR. Branched-chain amino acids and muscle protein synthesis in humans: myth or reality? J Int Soc Sports Nutr. 14(1): p. 30, 2017.

Nissen, S., et al., Effect of leucine metabolite β-hydroxy-β-methylbutyrate on muscle metabolism during resistance-exercise training. J Appl Physiol. 81(5): p. 2095–2104, 1996.

Fitschen, P.J., et al., Efficacy of beta-hydroxy-beta-methylbutyrate supplementation in elderly and clinical populations. Nutrition. 29(1): p. 29–36, 2013.

Fuller, J.C., Jr., et al., Free acid gel form of beta-hydroxy-beta-methylbutyrate (HMB) improves HMB clearance from plasma in human subjects compared with the calcium HMB salt. Br J Nutr. 105(3): p. 367–72, 2011.

Hyde, P.N., Kendall, K.L., LaFountain, R.A., Interaction of beta-hydroxy-beta-methylbutyrate free acid and adenosine triphosphate on muscle mass, strength, and power in resistance-trained individuals. J Strength Cond Res. 30(10): e10–11, 2016.

Phillips, S.M., et al., Changes in Body Composition and Performance With Supplemental HMB-FA+ATP. J Strength Cond Res. 31(5): e71–e72, 2017.

Gentles, J.A., S.M. Phillips, Discrepancies in publications related to HMB-FA and ATP supplementation. Nutr Metab (Lond). 14: p. 42, 2017.

Correia, A.L.M., et al., Pre-exercise beta-hydroxy-beta-methylbutyrate free-acid supplementation improves work capacity recovery: a randomized, double-blinded, placebo-controlled study. Appl Physiol Nutr Metab. 43(7): p. 691–6, 2018.

Primär-Quellen:

Seimon, R.V., et al., Do intermittent diets provide physiological benefits over continuous diets for weight loss? A systematic review of clinical trials. Molecular and Cellular Endocrinology. 15(418): p. 153–72, 2015.

Harris, L., et al., Intermittent fasting interventions for treatment of overweight and obesity in adults: a systematic review and meta-analysis. JBI Database of Systematic Reviews and Implementation Reports. 16(2): p. 507–47, 2018.

Schoenfeld, B.J., A.A. Aragon, and J.W. Krieger, Effects of meal frequency on weight loss and body composition: a meta-analysis. Nutr Rev. 73(2): p. 69–82, 2015.

 

Sekundär-Quellen:

Brad Jon Schoenfeld, Alan Albert Aragon, and James W. Krieger. The effect of protein timing on muscle strength and hypertrophy: a meta-analysis. Journal of the International Society of Sports Nutrition. 10(1): p. 53, 2013.

Alan Albert Aragon and Brad Jon Schoenfeld. Nutrient timing revisited: is there a post-exercise anabolic window? Journal of the International Society of Sports Nutrition. 10(1): p. 5, 2013

Layne Norton and Gabriel J. Wilson. Optimal protein intake to maximize muscle protein synthesis examinations of optimal meal protein intake and frequency for athletes. Agro Food Industry Hi Tech. 20(2): p. 54 57, 2009.

Daniel R Moore, Meghann J Robinson, Jessica L Fry, Jason E Tang, Elisa I Glover, Sarah B Wilkinson, Todd Prior, Mark A Tarnopolsky, and Stuart M Phillips. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. The American journal of clinical nutrition, 89(1): p. 161 168, 2009.

Oliver C Witard, Sarah R Jackman, Leigh Breen, Kenneth Smith, Anna Selby, and Kevin D Tipton. Myo brillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise. The American Journal of Clinical Nutrition. 99(1): p. 86 95, 2014.

Sigal Sofer, Abraham Eliraz, Sara Kaplan, Hillary Voet, Gershon Fink, Tzadok Kima, and Zecharia Madar. Greater weight loss and hormonal changes after 6 months diet with carbohydrates eaten mostly at dinner. Obesity. 19(10): p. 2006-2014, 2011.

Wing, R.R. and R.W. Jeffery, Prescribed “breaks” as a means to disrupt weight control efforts. Obes Res. 11(2): p. 287–291, 2003.

Doucet, E., et al., Evidence for the existence of adaptive thermogenesis during weight loss. Br J Nutr. 85(6): p. 715–23, 2001.

Rosenbaum, M., et al., Long-term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight. Am J Clin Nutr. 88(4): p. 906–12, 2008.

Levine, J.A., N.L. Eberhardt, and M.D. Jensen, Role of Nonexercise Activity Thermogenesis in Resistance to Fat Gain in Humans. Science. 283(5399): p. 212–214, 1999.

Byrne, N.M., et al., Intermittent energy restriction improves weight loss efficiency in obese men: the MATADOR study. Int J Obes. 42(2): p. 129, 2018.

Trexler, E.T., A.E. Smith-Ryan, and L.E. Norton, Metabolic adaptation to weight loss: implications for the athlete. J Int Soc Sports Nutr. 11(1): p. 7, 2014.

Coelho do Vale, R., R. Pieters, and M. Zeelenberg, The benefits of behaving badly on occasion: Successful regulation by planned hedonic deviations. Journal of Consumer Psychology. 26(1): p. 17–28, 2016.

Bussau, V.A., et al., Carbohydrate loading in human muscle: an improved 1 day protocol. Eur J Appl Physiol. 87(3): p. 290–5, 2002.

Loucks, A.B. and M. Verdun, Slow restoration of LH pulsatility by refeeding in energetically disrupted women. Am J Physiol. 275(4 Pt 2): p. R1218–26, 1998.

Olson, B.R., et al., Short-term fasting affects luteinizing hormone secretory dynamics but not reproductive function in normal-weight sedentary women. J Clin Endocrinol Metab. 80(4): p. 1187–93, 1995.

Harvie, M., et al., The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women. Br J Nutr. 110(8): p. 1534–47, 2013.

Varady, K.A., Intermittent versus daily calorie restriction: which diet regimen is more effective for weight loss? Obes Rev. 12(7): e593–601, 2011.

Campbell, B.I., et al., The effects of intermittent carbohydrate re-feeds vs. continuous dieting on body composition in resistance trained individuals: A flexible dieting study. 15th International Society of Sports Nutrition (ISSN) Conference and Expo; Clearwater Beach FL, USA 2018.

Friedman, J., P.D. Neufer, and G.L. Dohm, Regulation of Glycogen Resynthesis Following Exercise. Sports Med, 1991. 11(4): p. 232–243.

Ballor, D.L., et al., Resistance weight training during caloric restriction enhances lean body weight maintenance. Am J Clin Nutr. 47(1): p. 19–25, 1988.

Helms, E.R., A.A. Aragon, and P.J. Fitschen, Evidence-based recommendations for natural bodybuilding contest preparation: nutrition and supplementation. J Int Soc Sports Nutr. 11(1): p. 20, 2014.

Stote, K.S., et al., A controlled trial of reduced meal frequency without caloric restriction in healthy, normal-weight, middle-aged adults. Am J Clin Nutr. 85(4): p. 981–8, 2007.

Leidy, H.J., et al., The influence of higher protein intake and greater eating frequency on appetite control in overweight and obese men. Obesity (Silver Spring). 18(9): p. 1725–32 , 2010.

Arciero, P.J., et al., Increased protein intake and meal frequency reduces abdominal fat during energy balance and energy deficit. Obesity (Silver Spring). 21(7): p. 1357–66, 2013.

Farshchi, H.R., M.A. Taylor, and I.A. Macdonald, Regular meal frequency creates more appropriate insulin sensitivity and lipid profiles compared with irregular meal frequency in healthy lean women. Eur J Clin Nutr. 58(7): p. 1071–7, 2004.

Iwao, S., K. Mori, and Y. Sato, Effects of meal frequency on body composition during weight control in boxers. Scand J Med Sci Sports. 6(5): p. 265–72, 1996.

Munsters, M.J. and W.H. Saris, Effects of meal frequency on metabolic profiles and substrate partitioning in lean healthy males. PLoS One. 7(6): p. e38632, 2012.

Taylor, M.A. and J.S. Garrow, Compared with nibbling, neither gorging nor a morning fast affect short-term energy balance in obese patients in a chamber calorimeter. Int J Obes Relat Metab Disord. 25(4): p. 519–28, 2001.

Verboeket-van de Venne, W.P. and K.R. Westerterp, Influence of the feeding frequency on nutrient utilization in man: consequences for energy metabolism. Eur J Clin Nutr. 45(3): p. 161–9, 1991.

Farshchi, H.R., M.A. Taylor, and I.A. Macdonald, Decreased thermic effect of food after an irregular compared with a regular meal pattern in healthy lean women. Int J Obes Relat Metab Disord. 28(5): p. 653–60, 2004.

Conley, M.S. and M.H. Stone, Carbohydrate ingestion/supplementation for resistance exercise and training. Sports Med. 21(1): p. 7–17, 1996.

Ha , G.G., et al., Carbohydrate supplementation attenuates muscle glycogen loss during acute bouts of resistance exercise. Int J Sport Nutr Exerc Metab. 10(3): p. 326–39, 2000.

Ha, G.G., et al., Carbohydrate supplementation and resistance training. J Strength Cond Res. 17(1): p. 187–96, 2003.

Roy, B.D. and M.A. Tarnopolsky, Influence of differing macronutrient intakes on muscle glycogen resynthesis after resistance exercise. J Appl Physiol. 84(3): p. 890–6, 1998.

Snyder, A.C., et al., Carbohydrate consumption prior to repeated bouts of high-intensity exercise. European Journal of Applied Physiology and Occupational Physiology. 66(2): p. 141–5, 1993.

Tsintzas, K., et al., Carbohydrate ingestion prior to exercise augments the exercise-induced activation of the pyruvate dehydrogenase complex in human skeletal muscle. Exp Physiol. 85(5): p. 581–6, 2000.

Kulik, J.R., et al., Supplemental carbohydrate ingestion does not improve performance of high-intensity resistance exercise. J Strength Cond Res. 22(4): p. 1101–7, 2008.

Miller, S.L. and R.R. Wolfe, Physical exercise as a modulator of adaptation to low and high carbohydrate and low and high fat intakes. Eur J Clin Nutr. 53(Suppl 1): p. S112–9, 1999.

Dudgeon, W.D., E.P. Kelley, and T.P. Scheett, Effect of Whey Protein in Conjunction with a Caloric-Restricted Diet and Resistance Training. J Strength Cond Res. [Epub ahead of print], 2015.

Pennings, B., et al., Minced beef is more rapidly digested and absorbed than beef steak, resulting in greater postprandial protein retention in older men. American J Clin Nutr. 98(1): p. 121-128, 2013.

Primär-Quellen:

Halliday, T.M., J.P. Loenneke, and B.M. Davy, Dietary Intake, Body Composition, and Menstrual Cycle Changes during Competition Preparation and Recovery in a Drug-Free Figure Competitor: A Case Study. Nutrients. 8(11), 2016.

Fagerberg, P., Negative consequences of low energy availability in natural male bodybuilding: a review. Int J Sport Nutr Exerc Metab. 28(4): p. 385–402, 2018.

Rossow, L.M., et al., Natural bodybuilding competition preparation and recovery: a 12-month case study. Int J Sports Physiol Perform. 8(5): p. 582–92, 2013.

 

Sekundär-Quellen:

Hulmi, J.J., et al., The effects of intensive weight reduction on body composition and serum hormones in female fitness competitors. Frontiersin Physiology. 10(7): p. 689, 2017.

Rohrig, B.J., et al., Psychophysiological Tracking of a Female Physique Competitor through Competition Preparation. Int J Exerc Sci. 10(2):
p. 301–311, 2017.

Petrizzo, J., et al., Case Study: The Effect of 32 Weeks of Figure-Contest Preparation on a Self-Proclaimed Drug-free Female’s Lean Body and Bone Mass. Int J Sport Nutr Exerc Metab. 27(6): p. 543–9, 2017.

van der Ploeg, G.E., et al., Body composition changes in female bodybuilders during preparation for competition. Eur J Clin Nutr. 55(4): p. 268–77, 2001.

Maestu, J., et al., Anabolic and catabolic hormones and energy balance of the male bodybuilders during the preparation for the competition. J Strength Cond Res. 24(4): p. 1074–81, 2010.

Sundgot-Borgen, J., Garthe, I., Elite athletes in aesthetic and Olympic weight- class sports and the challenge of body weight and body compositions. Journal of Sports Sciences. 1(29 sup1): p. S101–14, 2011.

Fairchild, T.J., et. al., Rapid carbohydrate loading after a short bout of near maximal-intensity exercise. Med Sci Sports Exerc. 34(6): p. 980–6, 2002.

Olsson, K.E., Saltin, B., Variation in total body water with muscle glycogen changes in man. Acta Physiol Scand. 80(1): p. 11–8, 1970.

Balon TW et. al., Effects of carbohydrate loading and weight-lifting on muscle girth. Int J Sport Nutr. 2(4): p. 328–34, 1992.

Bamman, M.M., et. al., Changes in body composition, diet, and strength of bodybuilders during the 12 weeks prior to competition. J Sports Med Phys Fitness. 33(4): p. 383–91, 1993.

Sherman, W.M., et. al., Effect of exercise-diet manipulation on muscle glycogen and its subsequent utilization during performance. Int J Sports Med. 2(2): p. 114–8, 1981.

Goforth, H.W. Jr, et. al., Persistence of supercompensated muscle glycogen in trained subjects after carbohydrate loading. J Appl Physiol (1985). 82(1): p. 342–7, 1997.

Skou, J.C., Nobel Lecture. The identification of the sodium pump. Biosci Rep. 18(4): p. 155–69, 1998.

Costill, D.L., et. al., Muscle water and electrolytes following varied levels of dehydration in man. J Appl Physiol. 40(1): p. 6–11, 1976.

Stachenfeld, N.S., Acute effects of sodium ingestion on thirst and cardiovascular function. Curr Sports Med Rep. 7(4 Suppl): p. S7–13, 2008.

Crane, R.K., Miller, D., Bihler, I., “The restrictions on possible mechanisms of intestinal transport of sugars”. In: Membrane Transport and Metabolism. Proceedings of a Symposium held in Prague, August 22–27, 1960. Edited by A. Kleinzeller and A. Kotyk. Czech Academy of Sciences, Prague. P. 439–49, 1961.

Kerksick, C.M., et al., International society of sports nutrition position stand: nutrient timing. J Int Soc Sports Nutr. 14(1): p. 33. 2017.

Forbes, G.B., Body fat content influences the body composition response to nutrition and exercise. Ann N Y Acad Sci. 904(1): p. 359–65, 2000.

Kondo, M., et al., Upper limit of fat-free mass in humans: A study on Japanese Sumo wrestlers. Am J Hum Biol. 6(5): p. 613–18, 1994.

Buford, T.W., et al., The effect of a competitive wrestling season on body weight, hydration, and muscular performance in collegiate wrestlers. J Strength Cond Res. 20(3): p. 689–92, 2006.

Garthe, I., et al., Effect of two different weight-loss rates on body composition and strength and power-related performance in elite athletes. Int J Sport Nutr Exerc Metab. 21(2): p. 97–104, 2011.

Brechue, W.F., Abe, T., The role of FFM accumulation and skeletal muscle architecture in powerlifting performance. Eur J Appl Physiol. 86(4): p. 327–36, 2002.

Fogelholm, M., Effects of body weight reduction on sports performance. Sports Med. 18(4): p. 249–67, 1994.

Erreiche die maximale Ästhetik

Mit dem #1 KI-Coach für Natural-Bodybuilder